Evaluation of Immunogenicity, Protective Immunity on Aquaculture Pathogenic Vibrio and Fermentation of Vibrio alginolyticus Flagellin FlaC Protein

Document Type: Research Paper

Authors

1 Chinese-German joint Institute for natural product research / Shaanxi Engineering Research Center for Tall Gastrodia Tuber and Medical Dogwood / College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China

2 Centre of Molecular and Environmental Biology University of Minho, Department of Biology, Campus de Gualtar, Braga, Portugal

Abstract

Background: Vibrio are the main pathogenic bacteria in aquaculture. The flagellin protein C (FlaC) of Vibrio alginolyticus has good immunogenicity and the prospect of potential application in a vaccine.
Objectives: We aimed to evaluate the immunogenicity, protective immunity, and prokaryotic expression fermentation of V. alginolyticus FlaC protein for the vaccine in aquaculture.
Material and Methods: A molecular cloning method was used to construct the expression strain of FlaC protein, and the protein was purified with Ni-affinity chromatography. Polyclonal antiserum was prepared via mice immunized with the FlaC protein. The Western blot and enzyme-linked immunosorbent assay (ELISA) were used to check the specificity and titre of the antiserum. ELISA and pull-down assay detected the interaction between FlaC protein antiserum and Vibrio. The immune protection function of FlaC protein was detected with mice actively immunized with FlaC protein and challenged by V. alginolyticus and V. parahaemolyticus. The optimal expression conditions for FlaC protein were detected using an L9(34) orthogonal design model.
Results: The expression strain of FlaC protein was obtained successfully, and purified FlaC protein was prepared using a mice polyclonal antibody. The FlaC protein antiserum held a high specificity, and the titre was 1:3200. The antiserum directly interacted with V. alginolyticus and V. parahaemolyticus, and the FlaC protein demonstrated a significant immune protection function (50%) against V. alginolyticus infection and some immune protection function (41.66%) against V. parahaemolyticus. The optimal expression conditions for FlaC protein included a strain OD600 value of 0.8, final isopropyl-β-d-thiogalactoside (IPTG) concentration of 0.1 mmol/L, an inducing time of 8 hours, and an inducing temperature of 28°C.
Conclusions: This study showed that the FlaC protein possesses a significant immunogenicity and immune protection effect and obtained the optimal fermentation conditions. It is expected to be a potential vaccine against V. alginolyticus and V. parahaemolyticus.

Keywords

Main Subjects


1.           Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, et al. Vibrio spp. infections. Nat Rev Dis Primers. 2018;4(1):8. doi: 10.1038/s41572-018-0005-8 pmid: 30002421

2.           Zhu F, Qian X, Wang Z. Molecular characterization of minichromosome maintenance protein (MCM7) in Scylla paramamosain and its role in white spot syndrome virus and Vibrio alginolyticus infection. Fish Shellfish Immunol. 2018;83:104-114. doi: 10.1016/j.fsi.2018.09.028 pmid: 30205202

3.           Hamza F, Kumar AR, Zinjarde S. Efficacy of cell free supernatant from Bacillus licheniformis in protecting Artemia salina against Vibrio alginolyticus and Pseudomonas gessardii. Microb Pathog. 2018;116:335-344. doi: 10.1016/j.micpath.2018.02.003 pmid: 29408316

4.           Zidour M, Chevalier M, Belguesmia Y, Cudennec B, Grard T, Drider D, et al. Isolation and Characterization of Bacteria Colonizing Acartia tonsa Copepod Eggs and Displaying Antagonist Effects against Vibrio anguillarum, Vibrio alginolyticus and Other Pathogenic Strains. Front Microbiol. 2017;8:1919. doi: 10.3389/fmicb.2017.01919 pmid: 29085344

5.           Mechri B, Monastiri A, Medhioub A, Medhioub MN, Aouni M. Molecular characterization and phylogenetic analysis of highly pathogenic Vibrio alginolyticus strains isolated during mortality outbreaks in cultured Ruditapes decussatus juvenile. Microb Pathog. 2017;111:487-496. doi: 10.1016/j.micpath.2017.09.0 20 pmid: 28923608

6.           Zouiten A, Mehri I, Beltifa A, Ghorbel A, Sire O, Van Loco J, et al. Designation of pathogenic resistant bacteria in the Sparusaurata sea collected in Tunisia coastlines: Correlation with high performance liquid chromatography-tandem mass spectrometry analysis of antibiotics. Microb Pathog. 2017;106:3-8. doi: 10.1016/j.micpath.2017.01.004 pmid: 28062288

7.           Dongre M, Singh B, Aung KM, Larsson P, Miftakhova R, Persson K, et al. Flagella-mediated secretion of a novel Vibrio cholerae cytotoxin affecting both vertebrate and invertebrate hosts. Commun Biol. 2018;1:59. doi: 10.1038/s42003-018-0065-z pmid: 30271941

8.           Echazarreta MA, Kepple JL, Yen LH, Chen Y, Klose KE. A Critical Region in the FlaA Flagellin Facilitates Filament Formation of the Vibrio cholerae Flagellum. J Bacteriol. 2018;200(15). doi: 10.1128/JB.00029-18 pmid: 29581407

9.           Xing J, Zhou X, Tang X, Sheng X, Zhan W. FlaC supplemented with VAA, OmpK or OmpR as bivalent subunit vaccine candidates induce immune responses against Vibrio anguillarum in flounder (Paralichthys olivaceus). Vaccine. 2018;36(10):1316-1322. doi: 10.1016/j.vaccine.2017.11.074 pmid: 29397223

10.        Liang H, Xia L, Wu Z, Jian J, Lu Y. Expression, characterization and immunogenicity of flagellin FlaC from Vibrio alginolyticus strain HY9901. Fish Shellfish Immunol. 2010;29(2):343-348. doi: 10.1016/j.fsi.2010.04.003 pmid: 20420917

11.        Liu X, Chen C, Chen C, Ding R, Marslin G. Construction of a Recombinant OmpC Dominant Epitope-Based Vaccine Against Escherichia coli and Evaluation of Its Immunogenicity and Protective Immunity. Jundishapur J Microbiol. 2017;10(11). doi: 10.5812/jjm.55652

12.        Liu X, Yang MJ, Wang SN, Xu D, Li H, Peng XX. Differential Antibody Responses to Outer Membrane Proteins Contribute to Differential Immune Protections between Live and Inactivated Vibrio parahemolyticus. J Proteome Res. 2018;17(9):2987-2994. doi: 10.1021/acs.jproteome.8b00176 pmid: 30095909

13.        Zhang C, Huang X, Chen S, Li Y, Li Y, Wang X, et al. Epitope clustering analysis for vaccine-induced human antibodies in relationship to a panel of murine monoclonal antibodies against HPV16 viral capsid. Vaccine. 2018;36(45):6761-6771. doi: 10.1016/j.vaccine.2018.09.035 pmid: 30287156

14.        Franka R, Carson WC, Ellison JA, Taylor ST, Smith TG, Kuzmina NA, et al. In Vivo Efficacy of a Cocktail of Human Monoclonal Antibodies (CL184) Against Diverse North American Bat Rabies Virus Variants. Trop Med Infect Dis. 2017;2(3). doi: 10.3390/tropicalmed2030048 pmid: 30270905

15.        Ferlito C, Biselli R, Mariotti S, von Hunolstein C, Teloni R, Ralli L, et al. Tetanus-diphtheria vaccination in adults: the long-term persistence of antibodies is not dependent on polyclonal B-cell activation and the defective response to diphtheria toxoid re-vaccination is associated to HLADRB1 *01. Vaccine. 2018;36(45):6718-6725. doi: 10.1016/j.vaccine.201 8.09.041 pmid: 30269918

16.        Junker F, Krishnarajah S, Qureshi O, Humphreys D, Fallah-Arani F. A simple method for measuring immune complex-mediated, Fc gamma receptor dependent antigen-specific activation of primary human T cells. J Immunol Methods. 2018;454:32-39. doi: 10.1016/j.jim.2017.12.002 pmid: 29258749

17.        Rolle A, Meyer M, Calderazzo S, Jager D, Momburg F. Distinct HLA-E Peptide Complexes Modify Antibody-Driven Effector Functions of Adaptive NK Cells. Cell Rep. 2018;24(8):1967-1976 e1964. doi: 10.1016/j.celrep.2018.07.069 pmid: 30134159

18.        Razavi SS, Peyvandi H, Badrkhani Jam AR, Safari F, Teymourian H, Mohajerani SA. Magnesium Versus Bupivacaine Infiltration in Controlling Postoperative Pain in Inguinal Hernia Repair. Anesth Pain Med. 2015;5(6):e30643. doi: 10.5812/aapm.30643 pmid: 26705525

19.        Liu X, Chen C, Chen C, Marslin G, Ding R, Wu S. Construction and evaluation of a novel triple cell epitopebased polypeptide vaccine against cow mastitis induced by Staphylococcus aureus, Escherichia coli and Streptococcus. Trop J Pharm Res. 2017;16(10):2477-2486.

20.        Ghaderi H, Arasteh J, Hesampour A. Using response surface methodology in combination with Plackett-Burman design for optimization of culture media and extracellular expression of Trichoderma reesei synthetic endoglucanase II in Escherichia coli. Mol Biol Rep. 2018;45(5):1197-1208. doi: 10.1007/s11033-018-4272-y pmid: 30032381

21.        Khademi F, Yousefi-Avarvand A, Derakhshan M, Meshkat Z, Tafaghodi M, Ghazvini K. Mycobacterium tuberculosis HspX/EsxS fusion protein: gene cloning, protein expression, and purification in Escherichia coli. Rep Biochem Mol Biology. 2017;6(1):15-21.

22.        Lotfi H, Hejazi MA, Heshmati MK, Mohammadi SA, Zarghami N. Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction. Cell Mol Biol (Noisy-le-grand). 2017;63(9):96-105. doi: 10.14715/cmb/2017.63.9.17 pmid: 28980928

23.        Mesgari-Shadi A, Sarrafzadeh MH, Barar J, Omidi Y. Cost-effective batch production process of scFv antibody in Escherichia coli. Hum Antibodies. 2017;26(3):149-157. doi: 10.3233/HAB-180333 pmid: 29526846

24.        van Rijswijck IMH, van Mastrigt O, Pijffers G, Wolkers-Rooijackers JCM, Abee T, Zwietering MH, et al. Dynamic modelling of brewers' yeast and Cyberlindnera fabianii co-culture behaviour for steering fermentation performance. Food Microbiol. 2019;83:113-121. doi: 10.1016/j.fm.2019.04.010 pmid: 31202402