Biodecolorization and Biodegradation of Azo Dye Reactive Orange-16 by Marine Nocardiopsis sp.

Document Type : Research Paper


Biomolecules Laboratory, Technology Tower (TT 635), Vellore Institute of Technology (VIT) University, Vellore- 632014, Tamil Nadu, India


Background: Azo dyes are xenobiotic compounds that have bioaccumulated in the environment due to escalated industrial development. These are hazardous in nature, possessing carcinogenic and mutagenic effects on human beings.
Objectives: The perspective of the present study was to isolate and to determine azo dye (Reactive Orange-16) degrading potential of marine actinobacteria isolated from sediment samples of Port Blair, India.
Material and Methods: Actinobacteria with dye decolorization potential were isolated from sea sediment samples. The actinobacterial isolate with the highest dye decolorizing percentage was identified with the help of phenotypic, biochemical and molecular studies. The different physico-chemical parameters for dye decolorization were also optimized. The nature of decolorization by the potent isolate was determined with the help of High Performance Liquid chromatography (HPLC) and Fourier Transformed Infrared spectroscopy (FTIR) techniques. Further the toxicity of RO-16 decolorized products was investigated with the help of phytotoxcity assay.
Results: Out of six actinobacterial isolates, VITVAMB 1 possessed the most efficient RO-16 decolorization property. It decolorized 85.6% of RO-16 (250 mg L-1) within 24hrs. Isolate VITVAMB 1 was identified to be Nocardiopsis sp. Maximum dye decolorization occurred at pH 8, temperature 35°C, 3% salt concentration and a dye concentration of 50 mg L-1.
Conclusions: The nature of decolorization by Nocardiopsis sp. was biodegradation. Additionally, the degraded dye metabolites were found to be less toxic than pure dye. The high decolorization potential of VITVAMB 1 and the low toxicity of its degradation products make it a prospective dye removal system. The marine origin of VITVAMB 1 also makes it an attractive source for novel azo dye reducing enzymes.


Main Subjects

1.           Bafana A, Devi SS, Chakrabarti T. Azo dyes: past, present and the future. Environ Rev. 2011;19(NA):350-371. doi: 10.1139/a11-018
2.           Zollinger H. Color chemistry: syntheses, properties, and applications of organic dyes and pigments. New York: VCH; 1987.
3.           Chavan R. Indian textile industry. Indian J Fibre Textile Res. 2001;26:11-21.
4.           Bafana A, Chakrabarti T, Devi SS. Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Appl Microbiol Biotechnol. 2008;77(5):1139-1144. doi: 10.1007/s00253-007-1212-5 pmid: 18034237
5.           Shertate RS, Thorat P. Biotransformation of Textile Dyes: A Bioremedial Aspect of Marine Environment. Am J Environ Sci. 2014;10(5):489-499. doi: 10.3844/ajessp.2014.489.499
6.           Seshadri S, Bishop PL, Agha AM. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage. 1994;14(2):127-137. doi: 10.1016/0956-053x(94)90005-1
7.           Shah K. Biodegradation of Azo dye compounds. Int Res J Biochem Biotechnol. 2014;1(2):5-13.
8.           Senan RC, Abraham TE. Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation. 2004;15(4):275-280. pmid: 15473556
9.           Bagewadi ZK, Vernekar AG, Patil AY, Limaye AA, Jain VM. Biodegradation of industrially important textile dyes by actinomycetes isolated from activated sludge. Biotechnol Bioinf Bioeng. 2011;1(3):351-360.
10.        Subramani R, Aalbersberg W. Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res. 2012;167(10):571-580. doi: 10.1016/j.micres.2012.06.005 pmid: 22796410
11.        McCarthy AJ, Williams ST. Actinomycetes as agents of biodegradation in the environment — a review. Gene. 1992;115(1-2):189-192. doi: 10.1016/0378-1119(92)90558-7
12.        Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol. 1996;62(3):1120-1123. pmid: 8975606
13.        Wackett LP, Brusseau GA, Householder SR, Hanson RS. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol. 1989;55(11):2960-2964. pmid: 2624467
14.        Klausmeier R, Osman J, editors. Biodegradation of plastics by actinomycetes. Proceedings of the third International Biodegradation Symposium; 1976; London: Applied Science Publishers.
15.        Zhou W, Zimmermann W. Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett. 1993;107(2-3):157-161. doi: 10.1111/j.1574-6968.1993.tb06023.x pmid: 8472899
16.        Karthik L, Kumar G, Bhaskara Rao K. Diversity of marine actinomycetes from Nicobar marine sediments and its antifungal activity. Int J Pharm Pharm Sci. 2010;2(1):199-203.
17.        Priyaragini S, Veena S, Swetha D, Karthik L, Kumar G, Bhaskara Rao KV. Evaluating the effectiveness of marine actinobacterial extract and its mediated titanium dioxide nanoparticles in the degradation of azo dyes. J Environ Sci (China). 2014;26(4):775-782. doi: 10.1016/S1001-0742(13)60470-2 pmid: 25079407
18.        Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16(3):313-340. doi: 10.1099/00207713-16-3-313
19.        Singh S, Chatterji S, Nandini PT, Prasad ASA, Rao KVB. Biodegradation of azo dye Direct Orange 16 by Micrococcus luteus strain SSN2. Int J Environ Sci Technol. 2014;12(7):2161-2168. doi: 10.1007/s13762-014-0588-x
20.        Raja MMM, Raja A, Salique SM, Gajalakshmi P. Studies on effect of marine actinomycetes on amido black (azo dye) decolorization. J Chem Pharmac Res. 2016;8(8):640-644.
21.        Chakravarthy B, Vijayasree J, Swathi V, Sudhira D, Uma Maheswari Devi P. Screening and exploration of azo dye decolorizing actinomycetes from marine sediments. Int J Sci Eng Res. 2015;6(2):27-30.
22.        Shobana S, hangam BT. Biodegradation and Decolorization of Reactive Orange 16 by Nocardiopsis alba Soil Isolate. J Bioremed Biodegrad. 2012;03(06). doi: 10.4172/2155-6199.1000155
23.        Lakshmipathy TD, Prasad AA, Kannabiran K. Production of biosurfactant and heavy metal resistance activity of Streptomyces sp. VITDDK3-a novel halo tolerant actinomycetes isolated from saltpan soil. Biol Res. 2010;4(2):108-115.
24.        Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: A review. J Taiwan Instit Chem Eng. 2011;42(1):138-157. doi: 10.1016/j.jtice.2010.06.006
25.        Mane U, Gurav P, Deshmukh A, Govindwar S. Degradation of textile dye reactive navy–blue Rx (Reactive blue–59) by an isolated Actinomycete Streptomyces krainskii SUK–5. Malaysian J Microbiol. 2008;4(2):1-5.
26.        Lu L, Zeng G, Fan C, Ren X, Wang C, Zhao Q, et al. Characterization of a laccase-like multicopper oxidase from newly isolated Streptomyces sp. C1 in agricultural waste compost and enzymatic decolorization of azo dyes. Biochem Eng J. 2013;72:70-76. doi: 10.1016/j.bej.2013.01.004
27.        Babu SS, Mohandass C, Vijayaraj A, Dhale MA. Detoxification and color removal of Congo Red by a novel Dietzia sp.(DTS26)–a microcosm approach. Ecotoxicol Environ Saf. 2015;114:52-60.
28.        Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori Y. A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem. 2003;67(10):2167-2175. doi: 10.1271/bbb.67.2167 pmid: 14586105
29.        Molina-Guijarro JM, Perez J, Munoz-Dorado J, Guillen F, Moya R, Hernandez M, et al. Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea. Int Microbiol. 2009;12(1):13-21. pmid: 19440979
30.        Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem. 2003;133(5):671-677. doi: 10.1093/jb/mvg086 pmid: 12801920
31.        Mostafa M. Waste water treatment in textile Industries-the concept and current removal technologies. J Biodivers Environ Sci. 2015;7(1):501-525.
32.        Sahasrabudhe M, Pathade G. Biodegradation of azo dye CI Reactive Orange 16 by an actinobacterium Georgenia sp. CC-NMPT-T3. Intl J Adv Res 1: 91–99, 2013.
33.        Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol. 2009;100(9):2493-2500. doi: 10.1016/j.biortech.2008.12.013 pmid: 19157864
34.        Kalyani DC, Telke AA, Dhanve RS, Jadhav JP. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater. 2009;163(2-3):735-742. doi: 10.1016/j.jhazmat.2008.07.020 pmid: 18718713
35.        Sahasrabudhe MM, Saratale RG, Saratale GD, Pathade GR. Decolorization and detoxification of sulfonated toxic diazo dye C.I. Direct Red 81 by Enterococcus faecalis YZ 66. J Environ Health Sci Eng. 2014;12(1):151. doi: 10.1186/s40201-014-0151-1 pmid: 25649265
36.        Ilyas S, Rehman A. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp. Iranian J Environ Health Sci Eng. 2013;10(1):12. doi: 10.1186/1735-2746-10-12 pmid: 23369298
37.        Lade H, Govindwar S, Paul D. Low-Cost Biodegradation and Detoxification of Textile Azo Dye C.I. Reactive Blue 172 byProvidencia rettgeriStrain HSL1. J Chem. 2015;2015:1-10. doi: 10.1155/2015/894109