Enhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus

Document Type : Research Paper


1 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University; Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu 610065, Sichuan, P. R. China

2 College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan, P. R. China


Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of industry.
Objectives: Enhancement of soluble expression and biochemical characterization of epoxide hydrolases from Bacillus pumilus and B. subtilis.
Material and Methods: Homologous genes encoding epoxide hydrolases from B. pumilus and B. subtilis were cloned and expressed in Escherichia coli. The recombinant epoxide hydrolases were characterized biochemically.
Results: Low temperature induction of expression and aC-terminal-fused His-tag enhanced soluble expression of the epoxide hydrolases from the two Bacillus species in E. coli. These epoxide hydrolases could hydrolyze various epoxide substrates, with stereoselectivity toward some epoxides such as styrene oxide and glycidyl tosylate.
Conclusions: The position of the His-tag and the induction temperature were found to play a vital role in soluble expression of these two epoxide hydrolases in E. coli. In view of their catalytic properties, the epoxide hydrolases from Bacillus have potential for application in kinetic resolution of some epoxides to prepare enantiopure epoxides and vicinal diols.


Main Subjects

1.           Jacobsen EN. Asymmetric catalysis of epoxide ring-opening reactions. Acc Chem Res. 2000;33(6):421-431. pmid: 10891060
2.           Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science. 1997;277(5328):936-938. pmid: 9252321
3.           Archelas A, Furstoss R. Synthetic applications of epoxide hydrolases. Curr Opin Chem Biol. 2001;5(2):112-119. doi: 10.1016/s1367-5931(00)00179-4 pmid: 11282336
4.           Saini P, Sareen D. An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases. Mol Biotechnol. 2017;59(2-3):98-116. doi: 10.1007/s12033-017-9996-8 pmid: 28271340
5.           Lin H, Liu J-Y, Wang H-B, Ahmed AAQ, Wu Z-L. Biocatalysis as an alternative for the production of chiral epoxides: A comparative review. Journal of Molecular Catalysis B: Enzymatic. 2011;72(3-4):77-89. doi: 10.1016/j.molcatb.2011.07.012
6.           Barth S, Fischer M, Schmid RD, Pleiss J. Sequence and structure of epoxide hydrolases: a systematic analysis. Proteins. 2004;55(4):846-855. doi: 10.1002/prot.20013 pmid: 15146483
7.           Fretland AJ, Omiecinski CJ. Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact. 2000;129(1-2):41-59. doi: 10.1016/s0009-2797(00)00197-6 pmid: 11154734
8.           Sareen D, Kumar R. Prospecting for efficient enantioselective epoxide hydrolases. Indian J Biotechnol. 2011;10(10):161-177.
9.           Widersten M, Gurell A, Lindberg D. Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis. Biochim Biophys Acta. 2010;1800(3):316-326. doi: 10.1016/j.bbagen.2009.11.014 pmid: 19948209
10.        Orru RV, Faber K. Stereoselectivities of microbial epoxide hydrolases. Curr Opin Chem Biol. 1999;3(1):16-21. doi: 10.1016/s1367-5931(99)80004-0 pmid: 10021403
11.        Archelas A, Iacazio G, Kotik M. Epoxide Hydrolases and their Application in Organic Synthesis. 2016:179-229. doi: 10.1002/9781118828083.ch8
12.        Woo JH, Kang JH, Hwang YO, Cho JC, Kim SJ, Kang SG. Biocatalytic resolution of glycidyl phenyl ether using a novel epoxide hydrolase from a marine bacterium, Maritimibacter alkaliphilus KCCM 42376 [corrected]. J Biosci Bioeng. 2010;109(6):539-544. doi: 10.1016/j.jbiosc.2009.11.019 pmid: 20471590
13.        Xue F, Liu Z-Q, Zou S-P, Wan N-W, Zhu W-Y, Zhu Q, et al. A novel enantioselective epoxide hydrolase from Agromyces mediolanus ZJB120203: Cloning, characterization and application. Process Biochemistry. 2014;49(3):409-417. doi: 10.1016/j.procbio.2014.01.003
14.        Wu K, Wang H, Sun H, Wei D. Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol Biotechnol. 2015;99(22):9511-9521. doi: 10.1007/s00253-015-6716-9 pmid: 26088175
15.        Archelas A, Zhao W, Faure B, Iacazio G, Kotik M. Epoxide hydrolase-catalyzed enantioselective conversion of trans-stilbene oxide: Insights into the reaction mechanism from steady-state and pre-steady-state enzyme kinetics. Arch Biochem Biophys. 2016;591:66-75. doi: 10.1016/j.abb.2015.12.008 pmid: 26714303
16.        Wilson C, De Oliveira GS, Adriani PP, Chambergo FS, Dias MVB. Structure of a soluble epoxide hydrolase identified in Trichoderma reesei. Biochim Biophys Acta Proteins Proteom. 2017;1865(8):1039-1045. doi: 10.1016/j.bbapap.2017.05.004 pmid: 28502798
17.        Kotik M, Archelas A, Famerova V, Oubrechtova P, Kren V. Laboratory evolution of an epoxide hydrolase - towards an enantioconvergent biocatalyst. J Biotechnol. 2011;156(1):1-10. doi: 10.1016/j.jbiotec.2011.08.003 pmid: 21854816
18.        Kong XD, Yuan S, Li L, Chen S, Xu JH, Zhou J. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. Proc Natl Acad Sci U S A. 2014;111(44):15717-15722. doi: 10.1073/pnas.1404915111 pmid: 25331869
19.        Zou SP, Zheng YG, Wu Q, Wang ZC, Xue YP, Liu ZQ. Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis. Appl Microbiol Biotechnol. 2018;102(2):733-742. doi: 10.1007/s00253-017-8634-5 pmid: 29151159
20.        Zhu QQ, He WH, Kong XD, Fan LQ, Zhao J, Li SX, et al. Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl Microbiol Biotechnol. 2014;98(1):207-218. doi: 10.1007/s00253-013-4845-6 pmid: 23615737
21.        Hu D, Tang CD, Yang B, Liu JC, Yu T, Deng C, et al. Expression of a novel epoxide hydrolase of Aspergillus usamii E001 in Escherichia coli and its performance in resolution of racemic styrene oxide. J Ind Microbiol Biotechnol. 2015;42(5):671-680. doi: 10.1007/s10295-015-1604-y pmid: 25733186
22.        Woo JH, Hwang YO, Kang JH, Lee HS, Kim SJ, Kang SG. Enantioselective hydrolysis of racemic epichlorohydrin using an epoxide hydrolase from Novosphingobium aromaticivorans. J Biosci Bioeng. 2010;110(3):295-297. doi: 10.1016/j.jbiosc.2010.02.014 pmid: 20547378
23.        van Loo B, Kingma J, Arand M, Wubbolts MG, Janssen DB. Diversity and biocatalytic potential of epoxide hydrolases identified by genome analysis. Appl Environ Microbiol. 2006;72(4):2905-2917. doi: 10.1128/AEM.72.4.2905-2917.2006 pmid: 16597997
24.        Yong B, Yang BQ, Zhao CW, Feng H. Draft Genome Sequence of Bacillus subtilis Strain S1-4, Which Degrades Feathers Efficiently. Genome Announc. 2013;1(5). doi: 10.1128/genomeA.00766-13 pmid: 24072866
25.        Zhao CW, Wang HY, Zhang YZ, Feng H. Draft genome sequence of Bacillus pumilus BA06, a producer of alkaline serine protease with leather-dehairing function. J Bacteriol. 2012;194(23):6668-6669. doi: 10.1128/JB.01694-12 pmid: 23144411
26.        Li N, Zhang Y, Feng H. Biochemical characterization and transcriptional analysis of the epoxide hydrolase from white-rot fungus Phanerochaete chrysosporium. Acta Biochim Biophys Sin (Shanghai). 2009;41(8):638-647. doi: 10.1093/abbs/gmp052 pmid: 19657565
27.        Wu S, Shen J, Zhou X, Chen J. A novel enantioselective epoxide hydrolase for (R)-phenyl glycidyl ether to generate (R)-3-phenoxy-1,2-propanediol. Appl Microbiol Biotechnol. 2007;76(6):1281-1287. doi: 10.1007/s00253-007-1098-2 pmid: 17710393
28.        Shimizu K-i, Sakamoto M, Hamada M, Higashi T, Sugai T, Shoji M. The scope and limitation of the regio- and enantioselective hydrolysis of aliphatic epoxides using Bacillus subtilis epoxide hydrolase, and exploration toward chirally differentiated tris(hydroxymethyl)methanol. Tetrahedron: Asymmetry. 2010;21(16):2043-2049. doi: 10.1016/j.tetasy.2010.07.014
29.        Bala N, Chimni SS, Saini HS, Chadha BS. Bacillus alcalophilus MTCC10234 catalyzed enantioselective kinetic resolution of aryl glycidyl ethers. Journal of Molecular Catalysis B: Enzymatic. 2010;63(3-4):128-134. doi: 10.1016/j.molcatb.2009.12.019
30.        Li L, Xie T, Liu Z, Feng H, Wang G. Activity enhancement of CotA laccase by hydrophilic engineering, histidine tag optimization and static culture. Protein Eng Des Sel. 2018;31(1):1-5. doi: 10.1093/protein/gzx064 pmid: 29301022
31.        Kang JH, Woo JH, Kang SG, Hwang YO, Kim SJ. A cold-adapted epoxide hydrolase from a strict marine bacterium, Sphingophyxis alaskensis. J Microbiol Biotechnol. 2008;18(8):1445-1452. pmid: 18756107
32.        Negahdary M, Omidi S, Eghbali-Zarch A, Mousavi SA, Mohseni G. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomed Res. 2015;26:794-799.
33.        Li N. Cloning, expression and characterization of epoxide hydrolases from Phanerochaete chrysosporium. China: Sichuan University; 2009.
34.        Esposito D, Chatterjee DK. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol. 2006;17(4):353-358. doi: 10.1016/j.copbio.2006.06.003 pmid: 16781139
35.        Osadska M, Bonkova H, Krahulec J, Stuchlik S, Turna J. Optimization of expression of untagged and histidine-tagged human recombinant thrombin precursors in Escherichia coli. Appl Microbiol Biotechnol. 2014;98(22):9259-9270. doi: 10.1007/s00253-014-5840-2 pmid: 24878753
36.        Fang Z, Zhou P, Chang F, Yin Q, Fang W, Yuan J, et al. Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS One. 2014;9(7):e102423. doi: 10.1371/journal.pone.0102423 pmid: 25036001
37.        Zhu S, Gong C, Ren L, Li X, Song D, Zheng G. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression. Appl Microbiol Biotechnol. 2013;97(2):837-845. doi: 10.1007/s00253-012-4630-y pmid: 23250226
38.        Visser H, De Oliveira Villela Filho M, Liese A, Weijers CAGM, Verdoes JC. Construction and Characterisation of a Genetically Engineered Escherichia coli Strain for the Epoxide Hydrolase-catalysed Kinetic Resolution of Epoxides. Biocatalysis and Biotransformation. 2009;21(1):33-40. doi: 10.1080/1024242031000076215
39.        Draper AJ, Hammock BD. Inhibition of soluble and microsomal epoxide hydrolase by zinc and other metals. Toxicol Sci. 1999;52(1):26-32. doi: 10.1093/toxsci/52.1.26 pmid: 10568695
40.        Niehaus WG, Richardson SB, Wolz RL. Slow-binding inhibition of 6-phosphogluconate dehydrogenase by zinc ion. Arch Biochem Biophys. 1996;333(2):333-337. doi: 10.1006/abbi.1996.0399 pmid: 8809071
41.        Tandogan B, Ulusu NN. The inhibition kinetics of yeast glutathione reductase by some metal ions. J Enzyme Inhib Med Chem. 2007;22(4):489-495. doi: 10.1080/14756360601162147 pmid: 17847717
42.        Shah R, Chou TF, Maize KM, Strom A, Finzel BC, Wagner CR. Inhibition by divalent metal ions of human histidine triad nucleotide binding protein1 (hHint1), a regulator of opioid analgesia and neuropathic pain. Biochem Biophys Res Commun. 2017;491(3):760-766. doi: 10.1016/j.bbrc.2017.07.111 pmid: 28739258
43.          Hu D, Wang R, Shi XL, Ye HH, Wu Q, Wu MC, et al. Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system. J Biotechnol. 2016;236:152-158. doi: 10.1016/j.jbiotec.2016.08.013 pmid: 27546798