Investigation of Desulfurization Activity, Reusability, and Viability of Magnetite Coated Bacterial Cells

Document Type : Research Paper


1 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

2 Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

3 Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran


Background: Magnetic separation using magnetic nanoparticles can be used as a simple method to isolate desulfurizing bacteria from a biphasic oil/water system.
Objectives: Magnetite nanoparticles were applied to coat the surface of Rhodococcus erythropolis IGTS8 and Rhodococcus erythropolis FMF desulfurizing bacterial cells, and the viability and reusability of magnetite-coated bacteria evaluated by using various methods.
Material and Methods: Magnetite nanoparticles were synthesized through a reverse co-precipitation method. Glycine was added during and after the synthesis of magnetite nanoparticles to modify their surface and to stabilize the dispersion of the nanoparticles. The glycine-modified magnetite nanoparticles were immobilized on the surface of both oil-desulfurizing bacterial strains. Reusability of magnetite-coated bacterial cells was evaluated via assessing the desulfurization activity of bacteria via spectrophotometry using Gibb's assay, after the separation of bacterial cells from 96h-cultures with the application of external magnetic field. In addition, CFU and fluorescence imaging were used to investigate the viability of magnetite-coated and free bacterial cells.
Results: TEM micrographs showed that magnetite nanoparticles have the size approximately 5.35±1.13 nm. Reusability results showed that both magnetite-coated bacterial strains maintain their activity even after 5 × 96h-cycles. The viability results revealed glycine-modified magnetite nanoparticles did not negatively affect the viability of two bacterial strains R. erythropolis IGTS8 and R. erythropolis FMF.
Conclusions: In conclusion, the glycine-modified magnetite nanoparticles have great capacity for immobilization and separation of desulfurizing bacteria from suspension.


Main Subjects

1.           Francisco M, Arce A, Soto A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibr. 2010;294:39-48.
2.           Soleimani M, Bassi A, Margaritis A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv. 2007;25(6):570-596. doi: 10.1016/j.biotechadv.2007.07.003 pmid: 17716849
3.           Gupta N, Roychoudhury PK, Deb JK. Biotechnology of desulfurization of diesel: prospects and challenges. Appl Microbiol Biotechnol. 2005;66(4):356-366. doi: 10.1007/s00253-004-1755-7 pmid: 15538557
4.           Mohebali G, Ball AS. Biocatalytic desulfurization (BDS) of petrodiesel fuels. Microbiology. 2008;154(Pt 8):2169-2183. doi: 10.1099/mic.0.2008/017608-0 pmid: 18667551
5.           Boniek D, Figueiredo D, dos Santos AFB, de Resende Stoianoff MA. Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol Environ Pol. 2015;17(1):29-37.
6.           Abro R, Abdeltawab AA, Al-Deyab SS, Yu G, Qazi AB, Gao S, et al. A review of extractive desulfurization of fuel oils using ionic liquids. RSC Adv. 2014;4(67):35302-35317.
7.           Calzada J, Zamarro MT, Alcon A, Santos VE, Diaz E, Garcia JL, et al. Analysis of dibenzothiophene desulfurization in a recombinant Pseudomonas putida strain. Appl Environ Microbiol. 2009;75(3):875-877. doi: 10.1128/AEM.01682-08 pmid: 19047400
8.           Gunam IBW, Iqbal M, Arnata IW, Antara NS, Anggreni D, Made AA, et al., editors. Biodesulfurization of dibenzothiophene by a newly isolated Agrobacterium tumefaciens LSU20. Applied Mechanics and Materials; 2017: Trans Tech Publ.
9.           Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond). 2007;2(1):23-39. doi: 10.2217/17435889.2.1.23 pmid: 17716188
10.        Haukanes BI, Kvam C. Application of magnetic beads in bioassays. Biotechnology (N Y). 1993;11(1):60-63. pmid: 7763485
11.        Majewski AP, Schallon A, Jerome V, Freitag R, Muller AH, Schmalz H. Dual-responsive magnetic core-shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules. 2012;13(3):857-866. doi: 10.1021/bm2017756 pmid: 22296556
12.        Achilefu S, Raghavachari R, editors. Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications X. Proc of SPIE Vol; 2018.
13.        Simonsen G, Strand M, Øye G. Potential applications of magnetic nanoparticles within separation in the petroleum industry. J Petrol Sci Eng. 2018(165):488-495.
14.        Malekzadeh M, Nejaei A, Baneshi MM, Kokhdan EP, Bardania H. The use of starch‐modified magnetic Fe0 nanoparticles for naphthalene adsorption from water samples: Adsorption isotherm, kinetic and thermodynamic studies. Appl Organometal Chem. 2018;32(8):e4434.
15.        Kouassi GK, Irudayaraj J, McCarty G. Examination of Cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnology. 2005;3(1):1. doi: 10.1186/1477-3155-3-1 pmid: 15661076
16.        Molday RS, Yen SP, Rembaum A. Application of magnetic microspheres in labelling and separation of cells. Nature. 1977;268(5619):437-438. pmid: 302417
17.        Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995-4021. doi: 10.1016/j.biomaterials.2004.10.012 pmid: 15626447
18.        Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R198.
19.        Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng. 2009;102(5):1505-1512. doi: 10.1002/bit.22161 pmid: 19012265
20.        Li YG, Gao HS, Li WL, Xing JM, Liu HZ. In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol. 2009;100(21):5092-5096. doi: 10.1016/j.biortech.2009.05.064 pmid: 19541480
21.        Zakaria B, Nassar H, Saed D, El-Gendy NS. Enhancement of Carbazole Denitrogenation Rate Using Magnetically Decorated Bacillus clausii BS1. Petrol Sci Technol. 2015;33(7):802-811.
22.        Shan G, Xing J, Zhang H, Liu H. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol. 2005;71(8):4497-4502. doi: 10.1128/AEM.71.8.4497-4502.2005 pmid: 16085841
23.        Etemadifar Z, Derikvand P, Emtiazi G, Habibi MH. Response Surface Methodology Optimization of Dibenzothiophene Biodesulfurization in Model Oil by Nanomagnet Immobilized Rhodococcus Erythropolis R1. J Mater Sci Eng. 2014;4(10):322-330.
24.        Bardania H, Raheb J, Mohammad-Beigi H, Rasekh B, Arpanaei A. Desulfurization activity and reusability of magnetite nanoparticle-coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells. Biotechnol Appl Biochem. 2013;60(3):323-329. doi: 10.1002/bab.1090 pmid: 23656694
25.        Mohammad-Beigi H, Yaghmaei S, Roostaazad R, Bardania H, Arpanaei A. Effect of pH, citrate treatment and silane-coupling agent concentration on the magnetic, structural and surface properties of functionalized silica-coated iron oxide nanocomposite particles. Phys Low Dimens Syst Nanostruct. 2011;44(3):618-627.
26.        Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transact Magnet. 1981;17(2):1247-1248.
27.        Kayser KJ, Bielaga-Jones BA, Jachowski K, Odusan O, Kilbane JJ. Utilization of organosulfur compounds by axenic and mixed culture of Rhodococcus rhodochrous IGTS8. J Gen Microbiol. 1993;139:3123 - 3129.
28.        Monticello DJ. Continuous process for biological desulfurization of sulfur-bearing heterocyclic molecules. United States Patent 5 472 875. USA: Energy Biosystems Corp; 1995.
29.        Hu C, Gao Z, Yang X. Fabrication and magnetic properties of Fe 3 O 4 octahedra. Chem Phys Lett. 2006;429(4):513-517.
30.        Viota JL, Arroyo FJ, Delgado AV, Horno J. Electrokinetic characterization of magnetite nanoparticles functionalized with amino acids. J Colloid Interface Sci. 2010;344(1):144-149. doi: 10.1016/j.jcis.2009.11.061 pmid: 20096847
31.        Katas H, Mohamad A, Zin NM. Physicochemical effects of chitosan-tripolyphosphate nanoparticles on antibacterial activity against Gram-positive and Gram-negative bacteria. J Med Sci. 2011;11(4):192-197.
32.        Freeland Starr K. Microbial Implication of Iron Oxide Nanoparticles. USA: Auburn University; 2010.
33.        Negahdary M, Omidi S, Eghbali-Zarch A, Mousavi SA, Mohseni G. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomed Res. 2015;26:794-799.
34.        Mahmoudi M, Simchi A, Milani AS, Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci. 2009;336(2):510-518. doi: 10.1016/j.jcis.2009.04.046 pmid: 19476952
35.        Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 2009;6(5):1417-1428. doi: 10.1021/mp900083m pmid: 19445482