RGD-Modified Nano-Liposomes Encapsulated Eptifibatide with Proper Hemocompatibility and Cytotoxicity Effect

Document Type : Research Paper


1 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

2 Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

3 Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Industrial and Environmental Biotechnology, National Inst. of Genetic Engineering and Biotechnology, Tehran, Iran

5 Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

6 Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran


Background: Eptifibatide (Integrilin®) is a hepta-peptide drug which specifically prevents the aggregation of activated platelets. The peptide drugs are encapsulated into nanolipisomes in order to decreasing their side effects and improving their half-life and bioavailability.
Objectives: In this study, the in vitro cytotoxicity and hemocompatibility of RGD-modified nano-liposomes (RGD-MNL) encapsulated a highly potent antiplatelet drug (eptifibatide) was investigated.
Material and Methods: RGD-MNL encapsulated eptifibatide was prepared using lipid film hydration and freeze/thawing method. The morphology and size distribution (about 90 nm) of RGD-MNL were characterized using transmission electron microscopy (TEM). The in-vitro cytotoxicity of nano-liposomes was examined using the MTT, LDH release and reactive oxygen species (ROS) generation assays. The effect of RGD-MNL on red blood cells (RBC) was investigated using hemolysis and LDH release assays.
Results: The results revealed that RGD-MNL had no significant cytotoxic effect on HeLa and HUVEC cell lines, and also no ROS generation increase in the cells. In addition, the adverse effect of RGD-MNL on LDH release and membrane integrity of RBC was not observed.
Conclusions: In conclusion, the recommended RGD-MNL formulations have not any significant cytotoxicity on normal cells or RBC and have potential for protecting and enhancing the activity of antiplatelet drugs.


Main Subjects

1.           Chang K, Chiu J-J. Clinical applications of nanotechnology in atherosclerotic diseases. Curr Nanosci. 2005;1(2):107-115.
2.           Tcheng JE, O'Shea JC. Eptifibatide: a potent inhibitor of the platelet receptor integrin, glycoprotein IIb/IIIa. Expert Opin Investig Drugs. 1999;8(11):1893-1905. pmid: 11139832
3.           Addeo R, Faiola V, Guarrasi R, Montella L, Vincenzi B, Capasso E, et al. Liposomal pegylated doxorubicin plus vinorelbine combination as first-line chemotherapy for metastatic breast cancer in elderly women > or = 65 years of age. Cancer Chemother Pharmacol. 2008;62(2):285-292. doi: 10.1007/s00280-007-0605-6 pmid: 17922275
4.           Torchilin VP. Targeting of drugs and drug carriers within the cardiovascular system Adv Drug Delivery Rev. 1995;17 75-101.
5.           Mohammadian M, Farzampanah L, Behtash-oskouie A, Majdi S, Mohseni G, Imandar M, et al. A biosensor for detect nitrite (NO2-) and hydroxylamine (nh2oh) by using of hydroxylamine oxidase and modified electrode with ZnO nanoparticles. Int J Electrochem Sci. 2013;8(9):11215-11227.
6.           Schiener M., Hossann M., Viola JR., Ortega-Gomez A., Weber C., Lauber K., et al. Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med. 2014;20(5):271-281. doi: 10.1016/j.molmed.2 013.12.001 pmid: 24594264
7.           Haller C. A., Cui W, Wen J, Robson SC, Chaikof E. L. Reconstitution of CD39 in liposomes amplifies nucleoside triphosphate diphosphohydrolase activity and restores thromboregulatory properties. J Vasc Surg. 2006;43(4):816-823. doi: 10.1016/j.jvs.2005.11.057 pmid: 16616242
8.           Elbayoumi TA, Torchilin VP. Liposomes for targeted delivery of antithrombotic drugs. Expert Opin Drug Deliv. 2008;5(11):1185-1198. doi: 10.1517/17425240802497457 pmid: 18976130
9.           Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. Artif Cells Nanomed Biotechnol. 2017;45(8):1478-1489. doi: 10.1080/21691401.2017.1290647 pmid: 28278584
10.        Marques-Gallego P, de Kroon AI. Ligation strategies for targeting liposomal nanocarriers. Biomed Res Int. 2014;2014:129458. doi: 10.1155/2014/129458 pmid: 25126543
11.        Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32-45. doi: 10.1016/j.tibtech.2013.09.007 pmid: 24210498
12.        Vyas SP, Vaidya B. Targeted delivery of thrombolytic agents: role of integrin receptors. Expert Opin Drug Deliv. 2009;6(5):499-508. doi: 10.1517/17425240902878002 pmid: 19413457
13.        Srinivasan R, Marchant RE, Gupta AS. In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A. 2010;93(3):1004-1015. doi: 10.1002/jbm.a.32549 pmid: 19743511
14.        Huang G, Zhou Z, Srinivasan R, Penn MS, Kottke-Marchant K, Marchant RE, et al. Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials. 2008;29(11):1676-1685. doi: 10.1016/j.biomaterial s.2007.12.015 pmid: 18192005
15.        Mousavizadeh A, Jabbari A, Akrami M, Bardania HJC, Biointerfaces SB. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: A systematic review. Biointerfaces. 2017;158:507-517.
16.        Vaidya B, Nayak MK, Dash D, Agrawal GP, Vyas SP. Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. Int J Pharm. 2011;403(1-2):254-261. doi: 10.1016/j.ijpharm.2010.10.028 pmid: 20971175
17.        Lestini BJ, Sagnella SM, Xu Z, Shive MS, Richter NJ, Jayaseharan J, et al. Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. J Control Release. 2002;78(1-3):235-247. pmid: 11772464
18.        Goodman SL, Cooper SL, Albrecht RM. Integrin receptors and platelet adhesion to synthetic surfaces. J Biomed Mater Res. 1993;27(5):683-695. doi: 10.1002/jbm.820270516 pmid: 8390998
19.        Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F. Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide. Iran J Biotechnol. 2016;14(2):33-40. doi: 10.15171/ijb.1399 pmid: 28959324
20.        Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F, Zadeh ME, Naraki M, et al. Encapsulation of eptifibatide in RGD-modified nanoliposomes improves platelet aggregation inhibitory activity. J Thromb Thrombolysis. 2017;43(2):184-193. doi: 10.1007/s11239-016-1440-6 pmid: 27778144
21.        Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. pmid: 6606682
22.        Krejsa CM, Schieven GL. Detection of oxidative stress in lymphocytes using dichlorodihydrofluorescein diacetate.  Stress Response: Springer; 2000. p. 35-47.
23.        Mohammad-Beigi H, Shojaosadati SA, Morshedi D, Arpanaei A, Marvian AT. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles. J Nanopart Res. 2015;17(4):1-16.
24.        Kuznetsova NR, Sevrin C, Lespineux D, Bovin NV, Vodovozova EL, Meszaros T, et al. Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. J Control Release. 2012;160(2):394-400. doi: 10.1016/j.jconrel.2011.12.010 pmid: 22210161
25.        Bender EA, Adorne MD, Colome LM, Abdalla DSP, Guterres SS, Pohlmann AR. Hemocompatibility of poly(varepsilon-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 2012;426(1-2):271-279. doi: 10.1016/j.ijpharm.2012.01.051 pmid: 22322210
26.        Smistad G, Jacobsen J, Sande SA. Multivariate toxicity screening of liposomal formulations on a human buccal cell line. Int J Pharm. 2007;330(1-2):14-22. doi: 10.1016/j.ijpharm.2006.08.044 pmid: 16997516
27.        Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res. 2000;17(5):521-525. pmid: 10888302
28.        Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta. 1997;1329(2):345-356. pmid: 9371426
29.        Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL. Toxicity of therapeutic nanoparticles. Nanomedicine (Lond). 2009;4(2):219-241. doi: 10.2217/17435889.4.2.219 pmid: 19193187
30.        Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3-4):222-230. pmid: 11035250
31.          Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Frohlich E. The role of nanoparticle size in hemocompatibility. Toxicology. 2009;258(2-3):139-147. doi: 10.1016/j.tox.2009.01.015 pmid: 19428933