Isolation and Characterization of Plant Growth Promoting Antagonistic Bacteria from Cotton and Sugarcane Plants for Suppression of Phytopathogenic Fusarium Species

Document Type : Research Paper


1 Department of Biochemistry and Biotechnology, The Women University, Multan, Pakistan

2 National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan

3 Department of Biosciences, COMSAT Institute of Biotechnology, Islamabad, Pakistan


Background: Plant Growth Promoting Rhizobacteria (PGPR) may be utilized to augment plant growth and suppress the plant pathogens. Objective: The present study was conducted to isolate and characterize the antagonistic bacteria indigenous to cotton and sugarcane rhizosphere in Pakistan, and to evaluate their ability to suppress phytopathogenic Fusarium spp. Out of 63 isolates 37 different morphotypes were studied for their antagonistic activity against Fusarium monoliformae, Fusarium oxysporum and Fusarium solani. Among these 31 strains showed the percentage suppression ranging from 40 to 66% against Fusarium spp.
Objectives: The antagonistic bacteria having antifungal activity were studied for different morphological and physiological characteristics using Gram staining and light microscopy. Most of them were Gram negative and tentatively identified as Pseudomonas spp. The selected strains were screened in vitro for plant growth regulation and antifungal traits.
Material and Methods: Our study included 1000 premature CAD patients that classified into two groups with history of MI (n = 461) and without of MI (n = 539). The polymorphism variants in 10% of samples were determined by PCR-RFLP technique and genotyping of the polymorphism in all subjects was conducted by High Resolution Melting method. Given the two conditions of patients residing in Tehran and also faced with their first episode of MI, 640 out of 1000 study samples that had been previously followed-up were assessed in a retrospective cohort phase regarding long-term major adverse cardiac events (MACE).
Results: Four bacterial strains were able to produce the chitinase enzyme while four other bacterial strains showed protease production. Ten strains were positive for HCN production. Out of 37, eight strains showed phosphate solubilization ranging from 13 to 24 µg/ml. eighteen strains produced indole acetic acid ranging from 5 to 19 µg/ml.
Conclusions: This study identified specific traits in the isolated rhizobacteria which make them good candidates as PGPR and might contribute to enhance growth of crop plants. This information is of general interest and also helpful for devising strategies to manage diseases caused by Fusarium in cotton and sugarcane.


Main Subjects

1.           Chauhan S, Wadhwa K, Vasudeva M, Narula N. Potential of Azotobacter spp. as biocontrol agents againstRhizoctonia solaniandFusarium oxysporumin cotton (Gossypium hirsutum), guar (Cyamopsis tetragonoloba) and tomato (Lycopersicum esculentum). Arch Agronom Soil Sci. 2012;58(12):1365-1385. doi: 10.1080/03650340.201 1.590134
2.           Hofte M, Altier N. Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol. 2010;161(6):464-471. doi: 10.1016/j.resmic.2010.04.007 pmid: 20457252
3.           Santoyo G, Orozco-Mosqueda MdC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocont Sci Technol. 2012;22(8):855-872. doi: 10.1080/0958315 7.2012.694413
4.           Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity. Trend Biotech. 1989;7(2):39-44. doi: 10.1016/0167-7799(89)90057-7
5.           Babalola OO. Beneficial bacteria of agricultural importance. Biotechnol Lett. 2010;32(11):1559-1570. doi: 10.1007/s10529-010-0347-0 pmid: 20635120
6.           Vijay Krishna Kumar K, Yellareddygari SK, Reddy MS, Kloepper JW, Lawrence KS, Zhou XG, et al. Efficacy of Bacillus subtilis MBI 600 Against Sheath Blight Caused by Rhizoctonia solani and on Growth and Yield of Rice. Rice Sci. 2012;19(1):55-63. doi: 10.1016/s1672-6308(12)60021-3
7.           Brown ME. Seed and Root Bacterization. Annual Review of Phytopathology. 1974;12(1):181-197. doi: 10.1146/
8.           Stipanovic C. Control of Rhizoctonia solani on cotton seedling with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology. 1979;69:480-482. doi: 10.1094/Phyto-69-480
9.           Glick BR. The enhancement of plant growth by free-living bacteria. Canad J Microb. 1995;41(2):109-117. doi: 10.1139/m95-015
10.        Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem. 2010;42(8):1229-1235. doi: 10.1016/j.soilbio.2010.04 .014
11.        Şahin F, Çakmakçi R, Kantar F. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil. 2004;265(1-2):123-129. doi: 10.1007/s11104-005-0334-8
12.        Khan AG. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol. 2005;18(4):355-364. doi: 10.1016/j.jtemb.2005.02.0 06 pmid: 16028497
13.        Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG. Plant growth promotion in soil by some inoculated  microorganisms. J Microbiol. 2003;41:271-276.
14.        Dey R, Pal KK, Bhatt DM, Chauhan SM. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res. 2004;159(4):371-394. doi: 10.1016/j.micres.2004.08.004 pmid: 15646384
15.        Patten CL, Glick BR. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol. 1996;42(3):207-220. doi: 10.1139/m96-032 pmid: 8868227
16.        Leveau JH, Lindow SE. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol. 2005;71(5):2365-2371. doi: 10.1128/AEM.71.5.2365-2371.2005 pmid: 15870323
17.        Kochar M, Upadhyay A, Srivastava S. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Res Microbiol. 2011;162(4):426-435. doi: 10.1016/j.resmic.2011.0 3.006 pmid: 21397014
18.        Weller DM. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology. 2007;97(2):250-256. doi: 10.1094/PHYTO-97-2-0250 pmid: 18944383
19.        Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol. 2015;6:198. doi: 10.3389/fmicb.2015.00198 pmid: 25852661
20.        Ali B, Sabri AN, Hasnain S. Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol. 2010;26:1379-1384. doi: 10.1007/s11274-010-0310-1
21.        Djibaoui R, Bensoltane A. Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. Afr J Biotechnol. 2005;4(7):697-702. doi: 10.5897/AJB2005.000-3129
22.        Raupach GS, Kloepper JW. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology. 1998;88(11):1158-1164. doi: 10.1094/PHYTO.199 pmid: 18944848
23.        David RB, Richard WC, George MG, Don JB, Noel RK, James TS. Bergey's Manual of Systematic Bacteriology: Springer; 2005.
24.        Paulitz TC, Zhou T, Rankin L. Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biol Control. 1992;2(3):226-237. doi: 10.1016/1049-9644(92)90063-j
25.        Landa BB, Hervás A, Bettiol W, Jiménez-Díaz RM. Antagonistic activity of Bacteria from the chickpea rhizosphere againstFusarium Oxysporum f. sp.Ciceris. Phytoparasitica. 1997;25(4):305-318. doi: 10.1007/bf02981094
26.        Montealgro J, Reyes R, Perez L, Herrera R, Silva P, Besoain X. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in
tomato. Electr J Biotechnol. 2003;6:115-127. doi: 10.2225/vol6-issue2-fulltext-8
27.        Denizci AA, Kazan D, Abeln EC, Erarslan A. Newly isolated Bacillus clausii GMBAE 42: an alkaline protease producer capable to grow under higly alkaline conditions. J Appl Microbiol. 2004;96(2):320-327. doi: 10.1046/j.1365-2672.2003.02153.x pmid: 14723693
28.        Mehmood MA, Gai Y, Zhuang Q, Wang F, Xiao X, Wang F. Aeromonas caviae CB101 contains four chitinases encoded by a single gene chi1. Mol Biotechnol. 2010;44(3):213-220. doi: 10.1007/s12033-009-9227-z pmid: 19960373
29.        O'Brien M, Colwell RR. A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide. Appl Environ Microbiol. 1987;53(7):1718-1720. pmid: 3662513
30.        Schippers B, Bakker AW, Bakker PAHM, Van Pee R. Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil. 1990;129(1):75-83. doi: 10.1007/BF00011693
31.        Lorck H. Production of Hydrocyanic Acid by Bacteria. Physiologia Plantarum. 1948;1(2):142-146. doi: 10.1111/j.1399-3054.1948.tb07118.x
32.        Pikovskaya RI. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologya. 1948;17:362-370.
33.        Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta. 1962;27:31-36. doi: 10.1016/s0003-2670(00)88444-5
34.        Okon Y, Albrecht SL, Burris RH. Methods for Growing Spirillum lipoferum and for Counting It in Pure Culture and in Association with Plants. Appl Environ Microbiol. 1977;33(1):85-88. pmid: 16345192
35.        Tien TM, Gaskins MH, Hubbell DH. Plant Growth Substances Produced by Azospirillum brasilense and Their Effect on the Growth of Pearl Millet (Pennisetum americanum L.). Appl Environ Microbiol. 1979;37(5):1016-1024. pmid: 16345372
36.        Perez LM, Besoain X, Reyes M, Parado G, Montealegre JR. The expression of extracellular fungal cell wall hydrolytic enzymes in different Trichderma harzianum isolates correlate with their ability to control Pyrenochaeta lycopersic. Bio Res. 2002;35:401-410. doi: 10.4067/S0716-97602002000300014
37.        Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH. Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol. 2008;104(1):91-104. doi: 11.1111/j.1365-2672.2007.03534.x pmid: 17850318
38.        Kabir SR, Rahman MM, Tasnim S, Karim MR, Khatun N, Hasan I, et al. Purification and characterization of a novel chitinase from Trichosanthes dioica seed with antifungal activity. Int J Biol Macromol. 2016;84:62-68. doi: 10.1016/j.ijbiomac.2015.12.006 pmid: 26666429
39.        Rathore AS, Gupta RD. Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives. Enzyme Res. 2015;2015:791907. doi: 10.1155/2015/791907 pmid: 26664744
40.        Montealgro J, Reyes R, Perez L, Herrera R, Silva P, Besoain X. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solaniin tomato. Electron J Biotechnol. 2003;6 (2):115-127.
41.        El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol. 2014;5(651):651. doi: 10.3389/fmicb.2014.00651 pmid: 25538687
42.        Schippers B, Bakker AW, Bakker PAHM, Van Peer R. Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil. 1990;129(1):75-83. doi: 10.1007/bf00011693
43.        Chaiharn M, Lumyong S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol. 2011;62(1):173-181. doi: 10.1007/s00284-010-9674-6 pmid: 20552360