Helix segment assignment in proteins using fuzzy logic

Shahriar Arab¹, Farzad Didehvar², Changiz Eslahchi³, Mehdi Sadeghi ${ }^{*}$
${ }^{1}$ Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 131451384, Tehran, I.R. Iran ${ }^{2}$ Institute for Studies in Theoretical Physics and Mathematics (IPM), Niavaran Square, P.O. Box 19395-5746, Tehran, I.R. Iran ${ }^{3}$ Faculty of Mathematical Sciences, Shahid Beheshti University, Evin, Tehran, I.R. Iran ${ }^{4}$ Department of Biochemistry, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14155-6343, Tehran, I.R. Iran

Abstract

The automatic assignment of protein secondary structure from three dimensional coordinates is an essential step in the characterization of protein structure. Although, the recognition of secondary structures such as alpha-helices and beta-sheets seem straightforward, but there are many different definitions, each regarding different criteria. We have developed a new algorithm for protein helix assignment, by using fuzzy logic based on backbone torsion angles. In this method, each residue takes a number from 0 to 100 that indicates the helical membership degree of that residue. This method can be converted to a classical method whenever we assume that any residue with a membership degree greater than 83 is a helix. Comparison of the results with structures reported in protein data bank (PDB), dictionary of secondary structure of proteins (DSSP) and structure identification (STRIDE) for 324 proteins indicate that our algorithm works as well as DSSP showing 93\% agreement. We believe that the fuzzy secondary structure assignment has more advantages than the other classical approaches used for protein structure comparisons and alignments.

Keywords: Protein structure; Secondary structure assignment; Fuzzy logic.

INTRODUCTION

The automatic assignment of protein secondary structure from three dimensional coordinates is an essential step in the characterization of protein structure. The

[^0]secondary structure assignment plays an important role in structural genomics. The secondary structure segments are used in protein structure classification (Pearl et al., 2005; Andreeva et al., 2004; Hogue and Bryant, 1998), protein structure alignment (Sternberg et al., 1999; Marti-Renom et al., 2000; Sauder et al., 2000), comparative modeling and threading (Rost, 2000; Rice and Eisenberg, 1997; Kolinski et al., 1999; Xu et al., 1999), and also influence sequence alignment (Smith and Smith, 1992; Fischel-Ghodsian et al., 1993; Henneke, 1989). Although, the recognition of secondary structure such as alpha-helices and betasheets seem straightforward, there are still many different definitions, each regarding different criteria.

The main criteria used in secondary structure assignment are hydrogen bonding patterns known as dictionary of secondary structure of proteins (DSSP) (Kabsch and Sander, 1983), quantification of the back bone curvature (Richards and Kundrot, 1988), inter-c ${ }_{\alpha}$ distances (Levitt and Greer, 1977) and combination of hydrogen bond energy and torsion angle information known as structure identification (STRIDE) (Frishman and Argos, 1995). Comparing these methods on a protein database showed only 63% agreement between the se three algorithms (Colloc'h et al., 1993). Although, different methods may assign different secondary structure states to each residue, but they are similar in one aspect; each residue is defined in one state and we finally have a string of secondary structure states for the protein sequence. Despite the similarity between an assigned state such as the alpha-helix in different parts of a protein or different proteins, these structures are not exactly the same (Barlow and Thornton, 1988). For example, two alpha-helices with the same length in two different proteins may not have the exact geometrical similarity,
but in the assignment methods this difference is not considered, since most of the protein structure comparison methods are based on secondary structure alignment, renouncement of their geometrical differences leads to an inexact three-dimensional comparison. Thus, it is necessary to define parameters for secondary structures so that different and similar structures can be compared more precisely. In this study, we use fuzzy logic and assign a membership degree to each residue by considering the geometry of consecutive residues with Phi and Psi angles that indicate regular or irregular turns for consecutive residues. These fuzzy numbers may vary from 0 to 100 and can be used to compare two helices for a better similarity or difference.

The exclusive use of backbone torsion angles is not sufficient for assignment of all the secondary structure elements, however, helices' geometry has enough information for detection of helices. Although the algorithm presented in this article is solely based on dihedral angles, results show that the assigned fuzzy numbers identify helical regions of protein structure as good as other classical methods.

MATERIALS AND METHODS

Representative set of X-ray and NMR protein structures with resolutions better than $2.5 \AA$ and without chain breaks were gathered from the protein data bank (PDB) based on the PDBSELECT list for proteins, with less than 25% sequence similarity. 324 proteins with 48644 amino acids were selected. These are listed in Table 1.

Alpha-helices assigned by PDB were chosen as standard assignment. Backbone dihedral angles (φ and $\Psi)$ of each residue were taken as in DSSP. From a mathematical point of view, Δ and Δ^{2} are approximations of the first and second derivatives. Since our fuzzy algorithm is based on the geometrical structure of helices, and first and second derivatives are tools for studying the plot of a structure, we therefore used $\Delta \varphi$ and $\Delta^{2} \varphi, \Delta \psi$ and $\Delta^{2} \Psi$. To assign a helix fuzzy number to each residue, the following steps were carried out:

1. On all amino acids in the data set, $\Delta \varphi, \Delta \psi, \Delta^{2} \varphi$ and

Table 1. Protein Data Bank (PDB) codes of the Data Set.

1a02N	1ezvA	1ig3A	1sfcA	4sgbE	1ul7A	1 ykgA	1byqA	1dqeA	1ep0A	1gakA	1if1A	19g7A
1aohB	1f4nA	1 irdA	1 sfcB	5cytR	$1 \mathrm{mmq} A$	2asyA	1bywA	1dqgA	1 ete A	1gd7A	1im0A	1qleA
1aoiA	1fi7A	1jcqA	1t3jA	1 chvS	$1 \mathrm{uph} A$	2 axIA	1c1kA	1dqiA	1ew0A	1gd8A	1 irdB	1qmtA
1avyA	1 fltV	1jnmA	1tafB	1ci5A	$1 \mathrm{uss} A$	2azvA	1c3mA	1ds1A	1 excA	1 gl 2 A	1 irj A	1qsoA
1be3A	1 g 2 cA	1jqcA	1tvxA	1 cirA	1ut3A	1a2kA	1c5fA	1dxmA	1 eypA	1 gl 2 B	1j4xA	1qtoA
1bh8A	1g64A	1jqIA	1ty0A	1 cixA	1 uvf A	1a5oA	1c7kA	1e30A	1 f 2 dA	$1 \mathrm{gnh} A$	1j75A	$1 q u q A$
1 bmqA	1 gcqA	1 ktzA	1 uixA	1cjgA	1 uw0A	1 afrA	1c94A	1 e 3 kA	1f46A	1 gr 3 A	1j90A	1sknP
1c8uA	1gd2E	11jpA	1ur6A	1cl3A	1 uw 2 A	1aihA	1c9iA	1e44A	$1 f 5 \mathrm{vA}$	1h6wA	1j91A	1tafA
1cl7L	1gk4A	11 lmC	1 urqA	$1 \mathrm{gcc} A$	1uzcA	1aohA	1cc8A	1 e 6 iA	1 fa 2 A	1 hciA	1jejA	1tc3C
1cxzA	$1 \mathrm{gmj} A$	1 ln 1 A	1 urqB	1gd4A	1v06A	1aq4A	1 cnoA	1 ebuA	1fi2A	$1 \mathrm{hww} A$	1jifiA	1 tgx A
1dazA	1gqzA	1 lqvA	1v54A	1gh1A	1v1cA	1 atIA	1cqmA	1ec5A	$1 \mathrm{fl7B}$	1 hxrB	1jgsA	1tiid
1df4A	1gu4A	1 mspA	1vkkA	1gh5A	$1 \mathrm{v1dA}$	1avoA	1cqxA	1 ecsA	1 flk A	1hziA	1ji6A	1t\|2A
1dj7A	1guxA	1no4A	1wapA	1gh8A	1 v 2 yA	1ayoA	1cqyA	1 eczA	1 flmA	1i07A	1jmvA	1 tvxB
1dm9A	1h2sA	1oczA	1 wmsA	1gh9A	1v31A	1b0nA	1 cvmA	1ed1A	1 fltW	1 i 4 mA	1jyoA	1 kkrA
1dp5A	1h3qA	1qg7B	1xbrA	1ghhA	1v32A	1b3aA	1d8eA	1ee6A	1 fp 2 A	1i4sA	1k04A	1 ycqA
1dpsA	1h80A	1qn2A	1xdtT	1 gjtA	1v38A	1b4uA	1d8uA	1eggB	1fs7A	1i4wA	1k20A	2 cpgB
1 dtd A	1 hcfA	1qnaB	1ycpL	1 gjxA	1 v 3 a A	1b66A	1d9uA	1 ehkA	1 fvzA	1i4zA	1 k 2 fA	2eboA
1e1hA	1hxrA	1qnaA	1ytbA	1go1A	1v3fA	1b9xA	1dazC	1ej3A	1fx8A	$1 i 5 g A$	1 krqA	$2 h r v A$
1e44B	1hynP	1qrvA	$2 \mathrm{cpg} A$	1 uilA	1 v 5 kA	1 bfeA	1dcpA	1ej8A	1 fzcA	1 i 8 a	1 ktzB	2thiA
1e7kA	1hyrB	1r26A	2hddA	1 ujdA	1v5IA	1bh9A	1debA	1ejeA	1fzhA	1 i 8 nA	1 mkaA	3 ygsP
1 eaiA	1i1rA	1 r 3 j A	2occA	1ujoA	1 v 5 mA	1bkrA	1 dfnA	1ejfA	1 fzrA	199bA	1mr8A	
1 eayA	1i78A	1 r 4 xA	2 sivA	1 ujrA	1 v 5 rA	1 bnIA	1 dfuP	1 lm A	1 g 5 zA	1iazA	1p35A	
1eg4P	1 i 1 IA	1r7jA	3caaA	1 ujt A	1v61A	1 bpIA	1dm9B	1elwA	1g6uA	1ib5A	1 pcfA	
1 l ggA	1ic2A	1 ryhA	3ygsC	1ujvA	1v63A	1bqcA	1dmhA	1 mmvA	1g8kA	1 ibyA	1qb3A	
1 euvA	1 idrA	1scjA	4fapA	1uk5A	1v65A	1bxaA	1dp7P	1eoiA	1g9zA	1id1A	1 qftA	

$\Delta^{2} \psi$ for each residue were calculated as follow:
$\Delta \varphi(\mathrm{n})=\left\{\begin{array}{l}\min \{|\varphi(\mathrm{n})-\varphi(\mathrm{n}-1)| \cdot|\varphi(\mathrm{n})-\varphi(\mathrm{n}+1)|\} \\ \frac{|\varphi(\mathrm{n})-\varphi(\mathrm{n}-1)|+|\varphi(\mathrm{n})-\varphi(\mathrm{n}+1)|}{2}\end{array}\right.$
if $-100 \leq \varphi(n) \leq 0$
Otherwise
$\Delta \psi(\mathrm{n})=\left\{\begin{array}{lc}\min \{|\psi(\mathrm{n})-\psi(\mathrm{n}-1)| .|\psi(\mathrm{n})-\psi(\mathrm{n}+1)|\} & \text { if }-100 \leq \psi(\mathrm{n}) \leq 0 \\ \frac{|\psi(\mathrm{n})-\psi(\mathrm{n}-1)|+|\psi(\mathrm{n})-\psi(\mathrm{n}+1)|}{2} & \text { Otherwise }\end{array}\right.$
$\Delta^{2} \varphi(\mathrm{n})=\frac{\mid \Delta(\varphi(\mathrm{n}))-\Delta(\varphi(\mathrm{n}-1)|+|\Delta(\varphi(\mathrm{n}))-\Delta(\varphi(\mathrm{n}+1))|}{2}$
$\Delta^{2} \psi(\mathrm{n})=\frac{\mid \Delta(\psi(\mathrm{n}))-\Delta(\psi(\mathrm{n}-1)|+|\Delta(\psi(\mathrm{n}))-\Delta(\psi(\mathrm{n}+1))|}{2}$
Where n is denoted as the $\mathrm{n}^{\text {th }}$ amino acid in the protein.
2. Amino acids which are not located in the helix domain of the Ramachandran plot and with the following conditions were excluded from the data set.
$\left\{\begin{array}{c}-180 \leq \varphi \leq 0 \\ 64.5 \leq \psi \leq 180\end{array}\right.$ or $\left\{\begin{array}{c}-180 \leq \varphi \leq 0 \\ -180 \leq \psi \leq-153\end{array}\right.$
These residues form the set A.
3. All of the segments assigned as alpha-helix by PDB, with lengths more than seven residues were selected. Three residues from the N-cap and three residues from the C-cap were excluded and averages of $\Delta^{2} \varphi$ and $\Delta^{2} \Psi$ for the remaining residues were calculated and denoted by α_{φ} and α_{Ψ}, respectively.
4. For all residues in the helix state, in the data set with $\Delta^{2} \varphi \geq \alpha_{\varphi}$, average of φ was calculated and named $\ell_{1, \varphi} \cdot \ell_{1, \psi}$ was also calculated as above for Ψ angles. Hence, ℓ_{φ} and ℓ_{ψ} parameters are defined as:

$$
\begin{aligned}
& \ell_{\varphi}=2 \ell_{1, \varphi}-\alpha_{\varphi} \\
& \ell_{\psi}=2 \ell_{1, \psi}-\alpha_{\psi}
\end{aligned}
$$

In fact α_{φ} and α_{Ψ} denote the maximum variations allowed for a helix to be considered as a standard helix. Similar to the rational behind a 95% confidence interval for a mean in a normal distribution, we consider a confidence region for an amino acid to be in a helix structure, based on ℓ_{ψ} and ℓ_{φ} simultaneously. It should be mentioned here that the information on amino acids discarded in step 3 , is now being considered at this stage. This means no information has been missed. Since we are only interested in helix structure, therefore, all those amino acids considered in steps 3 (internal) and 4 (C- cap and N cap) are not to be considered.
5. f_{φ} and f_{Ψ} functions were defined as follows:

$$
\left.\begin{array}{c}
\mathrm{f}_{\varphi}(\mathrm{n})= \begin{cases}100 & \text { if } 0 \leq \Delta^{2} \varphi(\mathrm{n}) \leq \alpha_{\varphi} \\
\frac{100\left(\ell_{\varphi}-\Delta^{2} \varphi(\mathrm{n})\right)}{\ell_{\varphi}-\alpha_{\varphi}} & \text { if } \alpha_{\varphi} \leq \Delta^{2} \varphi(\mathrm{n}) \leq \ell_{\varphi}\end{cases} \\
\text { Otherwise }
\end{array}\right\} \begin{array}{ll}
100 & \text { if } 0 \leq \Delta^{2} \psi(\mathrm{n}) \leq \alpha_{\psi} \\
\mathrm{f}_{\psi}(\mathrm{n})= \begin{cases}\frac{100\left(\ell_{\psi}-\Delta^{2} \psi(\mathrm{n})\right)}{\ell_{\psi}-\alpha_{\psi}} & \text { if } \alpha_{\psi} \leq \Delta^{2} \psi(\mathrm{n}) \leq \ell_{\psi} \\
0 & \text { Otherwise }\end{cases}
\end{array}
$$

finally function f gives the fuzzy value for helicity according to the following formulation:

$$
f(n)=\left\{\begin{array}{l}
\frac{f_{q}(n)+f_{\psi}(n)}{2} \\
0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if residue was not in set } \mathrm{A} \\
& \text { if residue was in set } \mathrm{A}
\end{aligned}
$$

RESULTS AND DISCUSSION

Analysis of helix regularity using variation in the consecutive residue dihedral angles φ and ψ gives the helix fuzzy number for each residue, between 0 to 100 . Table 2 shows these numbers for two proteins. In this table helix assignment by PDB, DSSP, STRIDE, with fuzzy numbers greater than also 83 being compared. Usually the central residues of helices take numbers close to 100 , and N - and C - terminal residues of each helix take lower values and show less regularity. Consecutive residues with the same or near fuzzy numbers show the regular helix turn, although it may be far from the standard helix structure. Segments with fuzzy numbers close to 100 are regular helices with standard helix geometries. Helix distortion has been studied in detail and can be attributed to factors such as solvent-side chain interactions, local sequence and side chain packing (Barlow and Thornton, 1998). However, these factors cause the residues in helices to have different major chain conformations and such distortions could be shown by differences in consecutive dihedral angles.

Figure 1 shows the superposition of fragments assigned as helices by PDB with the same length and different or same fuzzy numbers using the CE program (http://cl.sdsc.edu/) (Shindyalov and Bourne, 1998). Root mean square (RMS) calculation shows a relation between fuzzy numbers and geometry of compared helices. Two superposed helices with the same fuzzy numbers show less RMS which increases when the fuzzy numbers of two helices are different. These assigned fuzzy numbers for residue helicity, in addi-

Table 2. Fuzzy numbers for parts of two proteins and comparison of assigned helices by PDB, DSSP, STRIDE with fuzzy numbers greater than 83 .

PDB Code	Residue No.	AA	Φ	ψ	PDB	DSSP	STRIDE	Fuzzy	$\begin{gathered} \text { fuzzy } \\ \text { number } \end{gathered}$
1 tafA	1	P	360	-46.7			H		0
1 tafA	2	K	-60.4	-46.67	H	H	H		24
1 tafA	3	D	-71.63	-33.94	H	H	H	H	98
1 tafA	4	A	-61.48	-40.57	H	H	H	H	95
1 tafA	5	Q	-63.2	-42.66	H	H	H	H	100
1 tafA	6	V	-60.52	-44.64	H	H	H	H	100
1tafA	7	I	-63.5	-38.7	H	H	H	H	100
1 tafA	8	M	-66.31	-35.52	H	H	H	H	100
1 tafA	9	S	-69.6	-37.58	H	H	H	H	100
1tafA	10	I	-64.63	-43.23	H	H	H	H	100
1 tafA	11	L	-58.14	-44.84	H	H	H	H	100
1 tafA	12	K	-68.43	-43.9	H	H	H	H	100
1 tafA	13	E	-61.57	-31.72	H	H	H	H	95
1 tafA	14	L	-92.67	18.81			H	H	94
1 tafA	15	N	62.46	32.33					50
1 tafA	16	V	-100.04	89.05					0
1 tafA	17	Q	-71.16	-28.82					34
1 tafA	18	E	-135.82	139.22					0
1 tafA	19	Y	-157.47	154.29					0
1 tafA	20	E	-66.29	138.8					0
1 tafA	21	P	-51.5	-38.42	H		H		61
1 tafA	22	R	-66.37	-10.64	H	H	H	H	94
1 tafA	23	V	-62.41	-39.91	H	H	H	H	88
1 tafA	24	V	-61.19	-43.74	H	H	H	H	100
1 tafA	25	N	-60.59	-47.54	H	H	H	H	100
1 tafA	26	Q	-56.4	-43.61	H	H	H	H	100
1 tafA	27	L	-71.13	-30.13	H	H	H	H	99
1 tafA	28	L	-71.39	-36.28	H	H	H	H	100
1 tafA	29	E	-67.91	-38.07	H	H	H	H	100
1 tafA	30	F	-64.85	-46.8	H	H	H	H	100
1 tafA	31	T	-52.22	-48.2	H	H	H	H	96
1 tafA	32	F	-63.38	-45.89	H	H	H	H	95
1 tafA	33	R	-61.87	-43.52	H	H	H	H	100
1 tafA	34	Y	-66.58	-51.07	H	H	H	H	100
1 tafA	35	V	-62.33	-44.79	H	H	H	H	100
1 tafA	36	T	-63.88	-38.44	H	H	H	H	100
1 tafA	37	S	-62.64	-47.57	H	H	H	H	100
1 tafA	38	I	-64.34	-44.48	H	H	H	H	100
1 tafA	39	L	-66.32	-34.26	H	H	H	H	100
1 tafA	40	D	-62.57	-39.36	H	H	H	H	100
1 tafA	41	D	-77.4	-42.75	H	H	H	H	94
1 tafA	42	A	-57.04	-35.34	H	H	H	H	95
1 tafA	43	K	-62.26	-37.52	H	H	H	H	100
1 tafA	44	V	-64.43	-44.47	H	H	H	H	100
1 tafA	45	Y	-61.78	-43.66	H	H	H	H	100
1 tafA	46	A	-61.67	-40.22	H	H	H	H	100
1 tafA	47	N	-61.9	-50.3	H	H	H	H	98
1tafA	48	H	-65.91	-15.55	H	H	H	H	99
1 tafA	49	A	-97.48	-5.11			H	H	85
$1 \mathrm{taf} A$	50	R	63.92	50.68					11
1tafA	51	K	-118.09	153.71					0
1 tafA	52	K	-97.6	-24.84					44
1 tafA	53	T	-115.29	129.16					0
1tafA	54	1	-65.54	131.73					0

Table 2. Continue

PDB Code	Residue No.	AA	Φ	ψ	PDB	DSSP	STRIDE	Fuzzy	fuzzy number
2hddA	1	R	360	98.14			C		0
2 hddA	2	T	-56.81	156.48			C		0
2hddA	3	A	-122.02	109.92			C		0
2 hddA	4	F	-64.56	141.64			C		0
2hddA	5	S	-78.2	150.34			C		0
2 hddA	6	S	-60.71	-17.65	H	H	H		62
2 hddA	7	E	-74.65	-39.48	H	H	H	H	87
2hddA	8	Q	-72.48	-47.52	H	H	H	H	100
2 hddA	9	L	-57.22	-36.55	H	H	H	H	93
2hddA	10	A	-70.11	-34.6	H	H	H	H	97
2hddA	11	R	-75.58	-39.4	H	H	H	H	100
2 hddA	12	L	-63.44	-44.31	H	H	H	H	99
2hddA	13	K	-64.21	-40.69	H	H	H	H	100
2hddA	14	R	-65.51	-37.31	H	H	H	H	100
2 hddA	15	E	-71.47	-42.55	H	H	H	H	99
2hddA	16	F	-59.23	-39.56	H	H	H	H	100
2 hddA	17	N	-65.6	-36.03	H	H	H	H	100
2 hddA	18	E	-74.17	-42.78	H	H	H	H	100
2hddA	19	N	-150.93	110.74			T		0
2 hddA	20	R	-75.14	-7.7		S	T	H	85
2hddA	21	Y	-122.12	129.73		S	T		0
2hddA	22	L	-84.17	146.57			T		0
2 hddA	23	T	-100.18	163.94			C		0
2hddA	24	E	-60.51	-41.43	H	H	H		33
2hddA	25	R	-63.75	-46.86	H	H	H	H	100
2 hddA	26	R	-66.22	-39.88	H	H	H	H	99
2hddA	27	R	-59.23	-38.93	H	H	H	H	99
2 hddA	28	Q	-66.89	-44.56	H	H	H	H	96
2hddA	29	Q	-66.63	-38.52	H	H	H	H	100
2hddA	30	L	-67.87	-39.93	H	H	H	H	100
2 hddA	31	S	-57.68	-50.17	H	H	H	H	97
2hddA	32	S	-59.15	-63	H	H	H	H	100
2 hddA	33	E	-57.53	-35.04	H	H	H	H	95
2 hddA	34	L	-93.27	-10.4	H	H	H	H	86
2hddA	35	G	68.66	49.19		T	C		15
2 hddA	36	L	-134.64	163.67			C		0
2hddA	37	N	-77.92	148.18			C		0
2hddA	38	E	-58.92	-29.2	H	H	H		44
2 hddA	39	A	-67.15	-33.47	H	H	H	H	99
2 hddA	40	Q	-71.2	-37.64	H	H	H	H	100
2hddA	41	I	-63.97	-48.95	H	H	H	H	100
2 hddA	42	K	-55.1	-47.67	H	H	H	H	100
2hddA	43	1	-70.52	-30.37	H	H	H	H	92
2hddA	44	W	-71.78	-42.86	H	H	H	H	97
2 hddA	45	F	-64.27	-39.37	H	H	H	H	100
2hddA	46	K	-62.29	-46.72	H	H	H	H	100
2 hddA	47	N	-70.3	-34.17	H	H	H	H	98
2 hddA	48	K	-64.31	-49.57	H	H	H	H	99
2 hddA	49	R	-53.59	-42.44	H	H	H	H	99
2 hddA	50	A	-67.6	-36.55	H	H	H	H	96
2hddA	51	K	-65.26	-49.54	H	H	H	H	98
2hddA	52	I	-59.03	-34.39	H	H	H	H	94
2 hddA	53	K	-60.14	-34.46	H	H	H	H	100
2hddA	54	K	-101.5	51.26		T	H		35
2hddA	55	S	-96.32	360			C		43

A

1HMNA	84	91	100	100	100	100	99	100	100	99	100	100	100	98	99	100	100
1MKAA	100	100	100	100	100	100	99	100	100	99	100	100	100	100	100	100	100
99																	

B

c

$\begin{array}{lrrrrrrrrrrrrrrrrrr}\text { 1HWWA } & 84 & 91 & 100 & 100 & 100 & 100 & 99 & 100 & 100 & 99 & 100 & 100 & 100 & 98 & 99 & 100 & 100 & 99 \\ \text { 1J90A } & 0 & 92 & 99 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 71 & 45 & 0 & 89 & 98 & 98 & 94\end{array}$ $\mathrm{RMSD}=2.6 \mathrm{~A}$

Figure 1. Superposition of helices with the same length and different or same fuzzy numbers, with their RMSD for residues 310-327 of 1HWWA, 79-96 of 1MKAA (A) 715-732 of 1HCIA (B) and 156-173 of $1 \mathrm{~J} 90 \mathrm{~A}(\mathrm{C})$.
tion to showing helix regularity can be used for comparison and alignment of protein structures. Instead, those with are based on a string of secondary structure elements in which each residue is defined as belonging to one state or another, and where the regularity and geometry of secondary structure is ignored. Fuzzy numbers also show helicity for small segments with
lengths of two or three residues that although are not classified as helices, but share similar geometry with the helix. However, the main goal of this method is assignment of a helical fuzzy number to each residue, but it can also be simply converted to the classical method involving the assignment of a residue with helical or non-helical structure. For this purpose, residues with fuzzy numbers greater than a threshold number k , were assigned as H and others as \boldsymbol{H}. In a five residue length window, if one H is surrounded by four $\boldsymbol{H s}$, it can be converted to \boldsymbol{H} and vice versa. Allowing k to vary, we can find all helix structures near to or far from the standard helix structure. For example, for k close to 100 , the helix structures near to the standard are found and if k was far from 100 , we detect the structure far from the standard. In order to compare with PDB, we look for a certain k for which the correlation coefficient of data generated by our algorithm after using the threshold number k and those generated by PDB are maximized. This leads to $\mathrm{k}=83$. Comparisons of the results with the crystallographer's assignments as percentage of correctly assigned residues in two states (helix or non-helix) are 90% for all amino acids in the dataset.

Comparison of DSSP with our method shows that they have 94% agreement for H and \boldsymbol{H}. Although many of the crystallographers define secondary structure based on the DSSP algorithm, comparison of DSSP and PDB assigned secondary structures in our dataset show 8% differences between them. Analysis of differences between results of this study and DSSP showed that 1342 residues were assigned by the method of this study to H , while DSSP assigned them to \boldsymbol{H}. There were 1783 residues that our method assigned to \boldsymbol{H}, while DSSP assigned them to H . Comparison of our method and STRIDE show approximately 94% agreement for H and \boldsymbol{H}. Table 3 shows the details of comparisons between the method described heae with PDB, DSSP and STRIDE and also comparisons of DSSP and STRIDE with PDB. Most of

Table 3. Comparison of results obtained by fuzzy logic and other methods.

Compared methods	TP 1	TN 2	FP 3	FN 4	Tot	$\%$	Sensitivity	Specificity	CC 5
Fuzzy and PDB	16822	26912	1200	3710	48644	89.9	81.9	93.3	0.79
Fuzzy and DSSP	15009	30510	1342	1783	48644	93.6	89.4	91.8	0.86
Fuzzy and STRIDE	15366	30175	1090	2013	48644	93.6	88.4	93.4	0.86
DSSP and PDB	16712	28035	80	3820	48644	91.98	81.4	99.5	0.84
STRIDE and PDB	17096	27832	283	3436	48644	92.36	83.3	98.4	0.85

${ }^{1}$ True positive (TP), ${ }^{2}$ True negative (TN), ${ }^{3}$ False Positive (FP), ${ }^{4}$ False negative (FN), ${ }^{5}$ Correlation Coefficient (CC).
the false positive and negative assignments between method of this study and PDB occurred at the edges of helices. Although the major assumption of this work is that helices can be defined by fuzzy logic and instead of assigning each residue to one state, it may be assigned by a fuzzy number which is far more valuable for comparing protein structures. However, this approach can also be used in the classical assignment of helix structure. The results obtained are as good as DSSP and STRIDE algorithms, which are the most widely used methods for secondary structure assignment.

In this article the main goal was only fuzzy number assignment to helices followed by demonstration of their regularities. Fuzzy number assignment to other secondary structures such as beta-strands and turns can be the subject of an independent work and in fact we are developing a method for fuzzy assignment of secondary structures. For this reason the title "Helix segment assignment in proteins using fuzzy logic" was selected for this article.

It is also believed that the combination of dihedral angles and other parameters such as H -bonds can lead to a different method with better results which can also be the subject of an other independent work.

References

Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2004). SCOP database in 2004: refinements integrate structure and sequence family. Nucleic Acids Res. 32: 226-229.
Barlow DJ, Thornton JM (1988). Helix geometry in proteins. J Mol Biol. 201: 601-619 Colloc'h N, Etchebest C, Thoreau E, Henrissat B, Mornon JP (1993). Comparison of three algorithms for the assignment of secondary structure in proteins: the advantages of a consensus assignment. Protein Eng. 6: 377-382.
Colloc'h N, Etchebest C, Thoreau E, Henrissat B, Mornon JP (1993). Comparison of three algorithms for the assignment of secondary structure in proteins: the advantages of a consensus assignment. Protein Eng. 6:377-82.
Fischel-Ghodsian F, Mathiowitz G Smith TF (1993). Alignment of protein sequences using secondary structure: a modified dynamic programming method. Protein Eng. 3: 577-81.
Frishman D, Argos P (1995). Knowledge-based protein secondary structure assignment. Proteins 23: 566-79.
Henneke CM (1989). A multiple sequence alignment algorithm for homologous proteins using secondary structure information and optionally keying alignments to functionally important sites. Comput Appl Biosci. 5: 141-50.
Hogue CW, Bryant SH (1998). Structure databases. Methods Biochem Anal. 39: 46-73.
Kabsch W, Sander C (1983). Dictionary of protein secondary struc-
ture: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577-2637.
Kolinski A, Rotkiewicz P, Ilkowski B, Skolnick J (1999). A method for the improvement of threading-based protein models. Proteins 37: 592-610.
Levitt M, Greer J (1977). Automatic Identification of Secondary Structure in Globular Proteins. J Mol Biol. 114 : 181-239.
Marti-Renom MA, Stuart A, Fiser A, Sanchez R, Melo F (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 29: 291- 325.
Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O, Lewis T, Bennett C, Marsden R, Grantm A, Lee D (2005). The CATH Doma4in Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res. 33: Database Issue D247-D251.
Rice DW, Eisenberg D (1997). A 3D-1D substitution matrix forprotein fold recognition that includes predicted secondary structure of thesequence. J Mol Biol. 267: 1026-1038.
Richards FM, Kundrot CE (1988). Identification of structural motifs from protein coordinate data: Secondary structure and first level super-secondary structure. Proteins 3:71-84.
Rost B (2000). TOPITS: Threading one-dimensional predictions into three-dimensional structures. The third international conference on Intelligent Systems for Molecular Biology, 314321.

Sauder JM, Arthur JW, Dunbrack RL (2000). Large-scale comparison of protein sequence alignment algorithms with structure alignments. Proteins 40: 6-22.
Shindyalov IN, Bourne PE (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11: 739-747.
Smith RF, Smith TF (1992). Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structuredependent gap penalties for use in comparative protein modeling. Protein Eng. 5: 35-41.
Sternberg MJ, Bates PA, Kelley LA, MacCallum RM (1999). Progress in protein structure prediction: assessment of CASP3. Curr Opin Str Biol. 9: 368-73.
Xu Y, Xu D, Crawford OH, Einstein, Larimer F, Uberbacher E, Unseren MA, Zhang G (1999). Protein threading by PROSPECT: a prediction experiment in CASP3, Protein Eng. 12: 899-907.

[^0]: *Correspondence to: Mehdi Sadeghi, Ph.D.
 Tel: +98 2144580373 ; Fax: +98 2144580399
 E-mail: sadeghi@nrcgeb.ac.ir

