
1. Background
As a subcellular organelle in the eukaryotic cells, 
mitochondrion plays an important role in the process of 
energy generation and energy metabolism (1).

It was proved that mitochondria contribute to many 
complex biological processes like programmed cell 
death and ionic homeostasis. Many diseases are related 
to the incorrect mitochondria function; thus the function 
of proteins in the mitochondria as a vital organelle of 

the cells is extremely important (1). 
A mitochondrion, in general, can be divided into four 

distinct parts; i.e. the outer membrane, inter-membrane 
space, inner membrane, and the matrix. Proteins in each 
of these compartments have their own biological role. 
Understanding protein functions are experimentally 
very time consuming and costly (2). Therefore, some 
computational systems were developed for the protein 
subcellular location prediction (3-15).
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Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used 
for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning 
algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted 
from protein sequences. In contrast, protein interactions have been less investigated.
Objectives: As protein interactions usually occur in the same or adjacent places, using this feature to find the location would 
be efficient and impressive. This study did not aim at increasing the total accuracy of the conducted research. The study has 
focused on the features of the proteins’ interaction and their employment which lead to a higher accuracy.
Materials and Methods: In this study, we have examined the protein interaction network as one of the features for 
prediction of the protein localization and its effects on the prediction results. In this regards, we have gathered some of the 
most common features including Amino Acid Composition, Dipeptide Compositions, Pseudo Amino Acid Compositions 
(PseAAC), Position Specific Scoring Matrix (PSSM), Functional Domain, Gene Ontology information, and the Pair-wise 
sequence alignment. The results of the classification are compared to the ones using protein interactions. For achieving this 
goal different machine learning algorithms were tested.
Results: The best-obtained results of using single feature set obtained using SVM classifier for PseAAC feature. The 
accuracy of combining all features with PPI data, using the Decision Tree and Random Forest classifiers, was 82.49% and 
83.35%, respectively. In another experiment, using just protein interaction data with the different cutting points resulted in 
obtaining an accuracy of 93.035% for the protein location prediction. 
Conclusion: In total, it was shown that protein(s) interaction has a significant impact on the prediction of the mitochondrial 
proteins’ location. This feature can separately distinguish the locations well. Using this feature the accuracy of the results 
is raised up to 5%.
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Protein-mitochondrial location prediction has 
attracted much of interest among scholars regarding 
mitochondrial bioinformatics. In this regard, Du 
and Li (1) have presented a method which was 
based on an extended version of pseudo-amino acid 
composition for predicting protein localization within 
the mitochondria called SubMito. They used leave-
one-out classification method and the accuracy of 
the results was found 85.5% for the inner membrane, 
94.5% for the matrix, and 51.2% for the outer 
membrane. The overall accuracy achieved with their 
method was 85.2 %. Afterwards, GP-Locby (16) 
presented a genetic programming approach. They 
used Du and Li dataset in their research. The overall 
prediction of the accuracy obtained by GP-Loc was 
89%. Zeng and his colleges (17) prepared a dataset 
including 399 mitochondria proteins. Their method 
was a sequence based algorithm combined with the 
augmented Chou’s pseudo amino acid composition 
(Chou’sPseAA) based on auto-covariance (AC). Their 
total obtained accuracy was 89.7%. Zakeri and his 
colleges (18) predicted the protein sub-mitochondrial 
locations based on data fusion of the various features 
extracted from protein sequences. They increased the 
overall accuracy to 94.7 %. Shi and his colleges (15) 
proposed a strategy of the discrete wavelet transform 
and obtained 93.38% for predicting sub-mitochondrial 
locations. Mei (19) used GO information and proposed 
a multi-kernel transfer learning model for the protein 
sub-mitochondrial localization (MK-TLM). Fan and 
Li (20) made another dataset which included 1,105 
mitochondrial proteins with sequence identity less 
than 40%. They proposed a method by combining 
the amino acid composition, dipeptide composition, 
reduced physicochemical properties, gene ontology, 
evolutionary information, and pseudo-average 
chemical shift. The overall prediction accuracy was 
93.57%. Lin and his colleges (2) constructed a dataset 
with sequence identity ≥25%. This dataset included 
495 mitochondrial proteins. They used Support Vector 
Machine to predict the sub-mitochondrial locations by 
using over-represented tetra-peptides selected by the 
binomial distribution. Their overall obtained accuracy 
for this dataset was 91.1%. Ahmad Khurshid and 
his colleges (21) used several classification learners 
including K-Nearest Neighbor, Probabilistic Neural 
Network, and Support Vector Machine (SVM). Among 
the various classification algorithms, SVM achieved 
the highest accuracy which was 95.20 % accuracy on 
dataset SML3-317 and 95.11 % on dataset SML3-983.
Also, another research has been done to predict 
protein localization. The study has used the protein 
interactions (PPI) (22)and has achieved acceptable 
results (23).

2. Objectives
In this study, we have focused on the protein interaction 
network as a new feature. At first, in this approach, 
the most common features of the protein sequences 
are extracted and the accuracy of the protein sub-
mitochondrial prediction locations is calculated using 
several classification methods including Support Vector 
Machines, K Nearest Neighbors, Naive Bayes, Decision 
Tree, and Random Forest, respectively. Then, we have 
investigated the effect of adding protein interaction 
features and compared the results.

3. Materials and Methods

3.1. Dataset
Four datasets have been provided in order to predict 
protein sub-mitochondrial locations. The dataset 
M317 presented by Du and Li (1) contains 131 inner 
membrane proteins, 145 matrix proteins, and 41 outer 
membrane proteins. The second dataset, M399 created 
by Zeng and et al (17), contains 171 inner membrane 
proteins, 166 matrix proteins, and 62 outer membrane 
proteins. The third dataset M1105 by Fan and Li (20) has 
589 inner membrane proteins, 280 matrix proteins, and 
236 outer membrane proteins. The last dataset M495 
derived by Lin. et al., (2) shows 254 inner membrane 
proteins, 132 matrix proteins, and 109 outer membrane 
proteins. 

Since the effect of protein interactions on the protein 
locations is investigated here, the target dataset in this 
study is the proteins that belong to a particular organism. 
In this regards, the concept of interactions should be 
meaningful. Thus, a new dataset has been prepared. 

In this research, the mitochondrial proteins’ dataset 
has been extracted from Swiss- Prot. The total number of 
proteins are 547,085 including Human, Mouse, Bovine, 
S. cerevisiae and proteins from other organisms. Within 
this study, we merely have investigated the human 
proteins. To achieve a reliable and high-quality dataset, 
the following steps have been followed:

1- Proteins in more than one place in a mitochondria 
are removed. 
2- Protein sequences are aligned in order to measure 
the similarity of their sequences using BLAST tool (1). 
3- The proteins with E-value less than 0.0001 are 
eliminated. (1). This has been done in order to eliminate 
the false positive as much as possible. As the E value 
is lowered, the sequences are more similar and their 
confidence for the homology is increased. 

Applying the aforementioned three steps, 435 
proteins were obtained, from which 199 were inner 
membrane proteins (IM), 26 were intermembrane space 



175Iran J Biotech. 2018;16(2):e1933

Haghighat Hosseini AS & Mirzarezaee M 

proteins (IMS), 132 were matrix proteins (M), and 78 
were outer membrane proteins (OM). This obtained 
dataset is called M435. A list of all the proteins involved 
in this study is available in the Supplementary File 1.  

3.2. Feature Vectors
3.2.1. Amino Acid Composition
The amino acid composition is a fraction of each amino 
acid in a protein and can be calculated for any of the 20 
natural amino acids by the following equation:

 
total number of amino acids of type Fraction of AAC

total number of amino acids in proteini
i

=      (1)

Where, i is any natural amino acid. The ACC 
extracted features for each protein is represented in a 
vector with 20 elements (18, 24, 25).

3.2.2. N-Peptide Composition
The N-peptide composition is the number of repeated 
occurrences of the amino acids in a consecutive protein 
sequence (18). When n is increased, the n-peptide 
compositions will maintain more general information 
from the sequences. If n =1, the n-peptide composition 
is the same as AAC, If n =2, the n-peptide composition 
called D-peptide composition (DP). For each protein, 
the DP feature has a 400 element feature vector. In most 
biological applications, n is 2 for efficient computing 
(26). D-peptide composition for each protein is 
calculated as: 

                                                                                 (2)
  

For the prediction of protein in a cell, many 
researchers used this feature (18, 26, 27).

3.2.3. Pseudo Amino Acid Composition (PseAAC)
This feature is used in many previous researches (18, 
28). The idea behind this feature was first introduced 
by Chou (2001) in order to avoid loss of sequence 
information. This feature vector is calculated as follows:

                                                                          (3)

Where the first 20 vector elements are AACs and 
other elements are obtained from physical properties 
of the amino acids. In this study, hydrophobicity, 

hydrophilicity, and the side chain mass of the amino 
acids were used. To calculate PseAAC, the Web-serverat 
(http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/) is used. 
Where λ is an integer parameter value. The different 
values of  λ can create different features. In this 
research, the optimum value for λ achieved from 1 to 
20 and 20 different feature vectors for representing a 
protein sample are created. The dimension of each 
feature vector is related to the value of λ and they can 
be acquired from Eq. 3 (18).

3.2.4. Functional Domain Composition
Proteins contain multiple domains and models. The 
function of a protein usually depends on the protein 
location. Therefore, functional domain composition (FD) 
can be used in sub-mitochondrial location prediction. For 
this purpose, InterPro dataset is used (29). 

                                                                          (4)

InterPro dataset contains a number of proteins with 
a known functional domain. The feature vector for 
our protein has 907 dimensions; for every protein in 
our dataset, if InterPro was very similar to a sequence 
section in the protein sequence and hit with them, we 
assigned 1 otherwise assigned 0 (18).

3.2.5. Position Specific Scoring Matrix
Position Specific Scoring Matrix (PSSM) is a Position-
Specific Scoring Matrix which is made of the processes 
carried out in PSI-BLAST. In PSSM, each amino acid 
in the sequence is mapped to 20 integers. Each number 
indicates the amino acid substitution at that location of 
the sequence, with each of the 20 amino acids found in 
nature are in the process of evolution (30). PSI-BLAST 
is used to compare different sequences for finding the 
similar sequences and discovery of their evolutionary 
relationships (31, 32).

3.2.6. Smith-Waterman (Pair-SW) Pairwise Sequence 
Pair-SW is the process of searching of the two 
sequences in order to find maximal levels of identical 
regions for the purpose of assessing the degree of 
similarity that may show functional, structural, and 
evolutionary relationships between the two biological 
sequences (33). Two different strategies are used 
for Pairwise sequence alignment namely: Global 
alignment and Local alignment. Global alignments 
are the most useful approach when the sequences in 
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the query are similar and are of equal size. A general 
global alignment technique is the Needleman-Wunsch 
algorithm (33).Local alignments are more beneficial 
for the dissimilar sequences with the different lengths. 
The Smith-Waterman algorithm is a general local 
alignment method. So according to our data set that 
contains different sequences in size, we used the Smith–
Waterman algorithm. 

3.2.7. Gene Ontology Information
The Gene Ontology (GO) is a major bioinformatics 
initiative for joining all the representations of the 
genes and their products and unifying them in one 
dataset. GO dataset contains: (a) cellular components 
referring to the place in cell where the gene is active; 
(b) molecular function; the biochemical activity 
of a gene product, and (c) biological process; the 
proceedings or collection of the molecular events with 
a specific beginning and the end (34). In this work, 
we just used the biological process and molecular 
function of a gene. Therefore, by mapping of the 
InterPro (http://www.ebi.ac.uk/interpro) entries to 
GO, we can get a list of data, and the mapping of each 
InterPro entrance to a GO number. To achieve this, a 
vector is formed. For every protein in our dataset, its 
GO related information is tagged. 

3.2.8. Protein-Protein Interaction
Protein-protein interactions (PPIs) refer to special 
physical contacts between two or more proteins. Proteins 
which are in the interaction should be in the same or 
in adjacent locations. Therefore, it is expected that the 
prediction of the subcellular localization using protein 
interactions should be improved. In this study, the String 
dataset has been used to obtain protein interactions (35). 
The STRING database is a collection of various methods 
employed for identifying interactions. It enabled us to 
select interactions using various methods with different 
degrees of the accuracy and thus expands our choices for 
considering more interactions. 

3.2.9. Combination of all Features
A combination of all input features including amino 
acid composition (AAC), D-peptide composition, 
Pseudo amino acid composition (PseAAC), Functional 
domain composition, Gene Ontology, Pairwise 
sequence alignment, and protein-protein interactions 
are also examined. 

3.3. Base Learners
The following classification methods are used in this 
study. All these methods are implemented in the R 
programming environment.

3.3.1. Support Vector Machines
Support Vector Machine (SVM; Vapnik 1995) is a 
supervised learning algorithm used for classification 
which finds the discrimination function with the largest 
distance between two classes. In this study, the RBF 
kernel function is used. An important issue is how to 
optimize SVM in case of selected parameters. Different 
values for the parameters of the RBF kernel function; 
C and γ are examined to achieve the best possible 
accuracy. For a multiclass SVM classification, we use 
the one-against-one approach proposed by Yu (26). 

3.3.2. K Nearest Neighbors
K Nearest Neighbors (KNN) is one of the simplest 
non-linear classifier. This classifier assigns the sample 
to the class with the highest vote among its k-nearest 
neighbors (36). In this study, Euclidean distance is used 
and the value of K is tested within the range of 1 to 10.

3.3.3. Naive Bayes
Naive Bayes (NB) classifier is a supervised learning 
algorithm. NB classifier is extremely scalable. Bayesian 
reasoning method is based on probability in order to 
draw inferences about the probability distribution of the 
optimal decision. (37, 38).

3.3.4. Decision Tree
A Decision (DT) Tree is a flowchart structure and 
a non-parametric supervised learning method used 
for classification and regression. Each internal node 
reflects a “test” of feature, each branch reflects the test 
results, and each leaf node represents a class label and 
path from the root to the leaves, which in turn indicates 
the classification rules (37). Decision Tree learning 
algorithms are generally recursive processes. In each 
step, one branch is selected. The important step in the 
Decision Tree algorithm is how to select the branches. 
Different algorithms employ different metrics to measure 
such as Gini Impurity used by the CART (classification 
and regression tree) algorithm, Information Gain used 
by the ID3, C4.5, and C5.0 Tree-Generation algorithms 
and Variance Reduction are used by the CART (39). 
Within this research, CART algorithm is used.

3.3.5. Random Forest
Random Forest (RF) is an ensemble method which 
is developed using bagging approach (40). Its main 
difference from Bagging is that its feature selection 
is random. This method involves multiple Decision 
Trees. K parameters contribute to the randomness. 
When K is equal to the total number of the features, 
the Decision Tree method is conducted typically. When 
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K=1, one feature is randomly selected. The proposed 
K is the logarithm of the number of properties in some 
studies; however, this number is the square root of the 
number of features. In an RF classification algorithm, 
two parameters should be specified by the user: M is a 
random subset of features and T is the number of trees. 
In this method, the value of T is considered 500.

3.4. Evaluation Criteria  
In this study, numerable features of the protein 
sequences are considered to predict mitochondrial 
protein mitochondrial locations. The performances of 
each classifier are evaluated by 10-fold cross-validation 
and using prediction accuracy (ACC), sensitivity and 
specificity of each location, and the overall prediction 
accuracy according to the following formulas: 

                                                                                 (5)

                                                                                 (6)
 

Where, TP(i) is the number of correctly predicted 
protein sequences that belong to location i (true 
positive), TN(i) is the number of correctly predicted 
protein sequences that do not belong to location i (true 
negative), FP(i) is the number of under -predicted 
protein sequences (false positive)and FN(i) is the 

number of over- predicted protein sequences (false 
negative). m is the total number of protein sequences, 
and k is the number of sub-mitochondrial locations 
representing OM, IMS, IM, and M, respectively (18).

4. Results 

Results are provided in two sections: the first section 
represents investigation regarding the obtained classifi-
cation accuracy for each feature set and the second section 
focuses on the protein interactions and their effects on the 
CCR of the obtained results. Also, each classifier will be 
evaluated by the cross-validation test.

4.1. Part 1: Analysis of the Results Using Different 
Feature Sets 
In this section, the best-obtained results through 
application different feature sets and the combination 
of all features using the five different classifiers are 
reported and discussed. 

PseAAC feature with λ=15 is the best-obtained 
accuracy from SVM classifier. As a result, the three 
best-obtained accuracy were from GO, PSSM, and 
FD features with 71.195%, 66.561%, and 66.169% as 
shown in Table 1. 

For KNN classifier, PseAAC with a λ=15 is the best-
obtained result and feature of accuracies of 69.62%, 
followed by the best accuracy for Pair-SW and PSSM 
from FD and features as shown in Table 2. 

Results for Naïve Bayes (NB) classification indicate 

Table 1. Best results using support vector machine for different feature sets.

Feature Set PseAAC (λ=15) with (C= 1, 
γ=0.01) (%)

GO (C = 6.5 and γ = 
0.01) (%)

PSSM (C = 10 and γ = 
0.01) (%)

FD (C = 100 and γ = 
0.2) (%)

Accuracy 76.49 71.20 66.56 66.17

IM 77.84 76.84 69.58 72.11

IMS 43 50 48.81 75

M 77.86 90.32 76.55 85.86

OM 93 73.53 59.71 60

Sensitivity

IM 68.68 73.68 67.16 84.21

IMS 0 0 0 50

M 87.31 100 69.23 84.62

OM 93.15 50 40 20

Specificity

IM 88.21 80 76 60

IMS 80 100 97.62 100

M 63.42 80.65 83.87 87.1

OM 80 97.06 79.41 100

( )( )
( ) ( )
TP iACC i

TP i FN i
=

+

4

1

1 ( )overall
k

ACC TP k
m =

= ∑

Inner membrane proteins (IM), intermembrane space proteins (IMS),  matrix proteins (M),  outer membrane proteins (OM). 
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the following order of the accuracy:  PseAAC (λ=15), 
PseAAC (λ=2), PSSM, and PseAAC (λ=12) as 
presented in Table  3. 

After testing all the selected classifiers with the 
common feature sets, the combination of all features was 
tested. The highest accuracy was obtained by combining 
all the features with PPI data using Decision Tree and 
Random Forest classifiers as found to be 82.49% and 

83.35%, respectively. The best-obtained accuracy for 
this classification with PseAAC (λ=20), PseAAC (λ=15), 
and GO features are shown in Table 4 and 5.

Thus, the highest accuracy; without adding majority 
voting in protein interaction features at this point, was 
the combination of all the features with a PPI matrix 
in the Random Forest algorithm with 83.35% of the 
accuracy.

Table 2. Best results using KNN classifier for different feature sets.

Feature Set
PseAAC (λ=15) with (K=10) 

(%)
FD with (K=1)

(%)
Pair-SW with (K=3) 

(%)
PSSM with (K=4)

(%)

Accuracy 69.62 62.01 60.02 58.26

IM 70.21 68.74 70.31 59.05

IMS 48.63 75 40 50

M 70.33 81.39 80.67 63.03

OM 98 60 59.23 66.18

Sensitivity

IM 68.42 89.47 70.33 52.11

IMS 0 50 0 0

M 69.23 69.23 30 70.54

OM 100 20 60 40

Specificity

IM 80 48 70 80.83

IMS 100 100 99 100

M 77.42 93.55 80.33 64.52

OM 100 100 90.94 82.35

Inner membrane proteins (IM), intermembrane space proteins (IMS),  matrix proteins (M),  outer membrane proteins (OM). 

Table 3. Best results using Naive Bayes for different feature sets.

Feature Set
PseAAC (λ=15)

(%)
PseAAC (λ=2)

(%)
PSSM(%)

PseAAC (λ=12)
(%)

Accuracy 70.77 58.34 58.07 56.54

IM 71.84 75.58 58.42 74.21

IMS 49.51 48.81 46.43 48.81

M 73.92 81.64 72.33 76.18

OM 100 52.66 62.55 5.59

Sensitivity

IM 55 63.16 36.84 68.42

IMS 0 0 0 0

M 71.43 92.31 76.92 84.62

OM 100 20 40 10

Specificity

IM 82.61 88 80 80

IMS 95.24 97.62 92.86 97.62

M 72.41   70.79 67.74 67.74

OM 100 85.29 85.29 91.18

Inner membrane proteins (IM), intermembrane space proteins (IMS),  matrix proteins (M),  outer membrane proteins (OM). 
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4.2. Part 2: Protein-Protein Interaction Features 
for the Predicted Sub-Mitochondrial Protein Locations

4.2.1. The First Experiment: Majority Voting for PPI 
Data Set without Considering Scores
In the first experiment, the interaction weights are not 
taken into consideration; therefore, all interactions 
have the same values. As the location of each protein 
in training datasets is determined, the majority voting 

is used to label the test datasets. Since there might exist 
proteins with no interaction data, the proposed method 
was unable to predict the location of all proteins. From 
a set of 435 proteins, only 264 of these proteins have 
interactions. The result of this phase has the accuracy 
of 80.67%.

4.2.2. The Second Experiment: Majority Voting for 
PPI Data Set with Scores

Table 4. Best results using Decision tree for different feature sets.

Feature Set
GO 
(%)

PseAAC (λ=15)
 (%)

PseAAC (λ=20) 
(%)

Mix of all feature with 
PPI (%)

Accuracy 66.32 73.45 57.86 82.49

IM 75.58 82.11 71.86 86.11

IMS 50 50 50 47.62

M 79.03 72.7 75.56 83.62

OM 58.53 100 60.59 100

Sensitivity

IM 63.16 84.21 70.95 84.21

IMS 0 0 0 0

M 100 61.54 68.92 76.92

OM 20 100 20 100

Specificity

IM 88 80 70 88

IMS 100 100 94.32 95.24

M 58.04 83.87 70.63 90.32

OM 97.06 100 89.13 100

Inner membrane proteins (IM), intermembrane space proteins (IMS),  matrix proteins (M),  outer membrane proteins (OM). 

Table 5. Best results using Random forest for different feature sets.

Feature Set GO (%) PseAAC (λ=15) (%) PseAAC (λ=20) (%) Mix of all feature with PPI (%)

Accuracy 67.76 73.965 67.448 83.35

IM 69.47 79.78 73.28 90.74

IMS 50 50 50 50

M 76.55 75.12 68.62 91.32

OM 68.53 100 93.5 100

Sensitivity

IM 78.95 90 83.5 89.47

IMS 0 0 0 0

M 69.23 57.14 50.64 90.31

OM 40 100 93.5 100

Specificity

IM 60 69.57 64.32 92

IMS 100 100 92.15 100

M 83.87 93.1 86.62 92.33

OM 97.06 100 83.43 100

Inner membrane proteins (IM), intermembrane space proteins (IMS),  matrix proteins (M),  outer membrane proteins (OM). 
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In the second experiment, scores of interactions are also 
considered. The interaction between the two proteins in 
the String dataset has a number between 0 and 1000. 
Four thresholds as cutting points of the interactions 
were taken into consideration: 200, 500, 700, and 900. 
It is obvious that a higher threshold will select just the 
interactions with a higher confidence, but the number 
of interactions decreases as well. Table 6 lists proteins 
with four different cutting thresholds. 

The results of applying majority voting to the protein 
interaction data with four different cutting points are 
shown in Table 7. 

As shown in Table 7, increasing the cutting point for 
protein interactions can increase the accuracy of the 
results dramatically up to the 700 point; and the desired 
results will decrease afterward because the number of 
interactions will decrease when the cutting point is set 
at a very high rate. The best tested threshold for this 

purpose is 700. In comparison with the other tested 
approaches, it was shown that this method obtains 
favorable results. The summary of the results is shown 
in Figure 1. As it is shown in this Figure, the interaction 
of the protein with a score greater than or equal to 700 
has given the highest degree of accuracy. It should be 
noted that the accuracy of the protein interactions is for 
a number of proteins and not for all the other proteins 
obtained in this project. So in the next experiment, we 
used a combination of all features that will be described 
in detail.

4.2.3. The Third Experiment: Combination of all 
Feature Sets with Protein Interactions 
In the third experiment, the main question was whether 
adding protein interaction features will increase the 
classification accuracy or not. For increasing the 
classification accuracy, these experiment sets up were 

Table 6. Number of available protein interactions based on 
different cutting points.

Range Number of protein 
interactions

Interaction with a score greater 
than or equal to 200 251

Interaction with a score greater 
than or equal to 500 213

Interaction with a score greater 
than or equal to 700 201

Interaction with a score greater 
than or equal to 900 109

Table 7. Majority voting with different Cutting points.

Conditions Results (%)

PPIs with score greater than 
or equal to 200 83.27

PPIs with score greater than 
or equal to 500 86.86

PPIs with score greater than 
or equal to 700 93.035

PPIs with score greater than 
or equal to 900 89.19

Figure 1. Comparison between best result of  different classifiers with protein 
interaction in majority voting.
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as follows: for the proteins with available protein 
interaction data, this feature was used and if such a data 
was not available the results of classification based on 
other features were used. In this experiment, different 
classifiers were also tested and the results for each 
classifier were reported separately in Supplementary 
File 2. As the results for SVM classifier show, the 
highest achieved accuracy was from PPI data with 700 
as the cutting point and the PseAAC feature with λ = 
15. 

For the KNN classifier, the best results were from 
protein interactions with 700 as the cutting point 
and PseAAC feature with λ = 15. For the Decision 
Tree algorithm, the best-obtained results were for a 
combination of all features with the protein interactions 
of 700 as the cutting point. The best next result was for 
the same features with a cutting point of 500 on protein 
interactions. 

In NB classifier, the highest accuracy was from 
protein interactions with 700 as the Cutting point 
and the PseAAC feature with λ = 15. Random Forest 
algorithm had the best result for this study by combining 
all features with PPI of 700 as the cutting point. 

4.2.4. The Fourth Experiment 
In the fourth experiment, our investigation was focused 
on the hypothesis that whether an increase in the 
number of proteins whose protein interaction is known 
can increase the classification accuracy or not.

In order to achieve this goal, it is supposed that the 
only existing proteins are those obtained from the PPI 
with the score of 700. This is because of the fact that the 
majority of voting with the accuracy of 93.035% was 
related to the protein interactions with the score of 700. 
As a result, it is supposed that we have only 201 
proteins for all of which protein interactions exist. In 
the first step, all the datasets were combined so that 
datasets are placed in the same place and were provided 
with equal distribution. In the second step, the datasets 
were divided into 4 sections. Therefore, the combined 
datasets were divided into three groups with 50 proteins 
and one group with 51 proteins. In the third step, it was 
proposed to randomize and calculate with 50 proteins 
and their subsequent 50 interactions. This was done for 
every four groups and the accuracy was achieved; in the 
end, the average was calculated. In the fourth step, the 
second group was added to the previous group. Thus, 
more interactions were added, the majority voting was 
conducted, and the accuracy was achieved. In the final 
step, the third and the fourth groups were added; the 
fourth chosen group was included all the proteins and 
their interactions.    

 In this experiment, the protein interaction data with 

700 as the cutting point was used, as this cutting point 
was the best results from the previous studies. For this 
purpose data was divided into four equal sections and 
the classification of the proteins based on their protein 
interaction data was done in four different steps. In 
each step, one more section of the data was added 
in the process of the decision making for the protein 
localization and the majority voting algorithm was used 
for the classification. 

In this experiment, it was shown that if the protein 
interaction data increases, the result of the classification 
is also increased and the accuracy of the results will be 
improved. The results are shown in Figure 2. 

5. Discussion
The present study aimed at comparing the predictive 
method with and without using protein interactions in 
order to reveal that by taking the protein interaction 
into consideration, the predictive power will improve 
as well. As a result, the comparisons are merely made 
using the mentioned classifiers and the used databases. 
Four datasets M317(1), M399(17), M1105(20) 
and M495(2) have been provided to predict sub-
mitochondrial locations. As mentioned before, in order 
to investigate the effect of protein interactions on the 
protein locations, a new dataset has been prepared that 
is called M435. Several methods are presented for 
the purpose of Machine Learning. These methods use 
protein sequences and amino acid assessment as their 
input and predictions performance of our classifiers 
were evaluated by calculating the prediction accuracy 
(ACC) (18).

In this study, different feature sets were tested to 
predict the location of the proteins in the mitochondria; 
PseAAC that used in SubMito (1) with λ=15 is the 
best-obtained accuracy from SVM, KNN and NB with 

Figure 2. Increase in the number of PPI data and its effects 
on prediction of protein localization.
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accuracies 76.49%, 69.62% and 70.77% . The highest 
accuracy was obtained by combining all the features 
with PPI data using Decision Tree and Random Forest 
classifiers with accuracies of 82.49% and 83.35% 
respectively. Random Forest classifier performs best in 
most cases (23). Then the effect of protein interaction 
data and its relation to the interactions were investigated. 
The interaction between the two proteins in the String 
dataset has a number between 0 and 1000. Four 
thresholds as cutting points of the interactions were 
taken into consideration that the best tested threshold 
for this purpose is 700. Random Forest algorithm had 
the best result for this study by combining all features 
with PPI of 700 as the cutting point resulted in obtaining 
an accuracy of 93.035%. The method aimed at showing 
how the previous accuracies, which have been achieved 
through a common method, will increase as we gain 
more information regarding protein interaction. As 
a result, as the number of the known interactions 
increases, the total accuracy will increase as well. Since 
protein interactions usually occur among the residing 
proteins in one location or adjacent locations, the use of 
this feature will be beneficial for solving the prediction 
issue of the protein locations. 

The results show that interactions have a direct 
correlation with the location of the proteins. The 
proximity of the proteins which makes them interact 
is a factor in the identification of their locations. This 
feature is among the most important features in the 
prediction of the protein locations. Our experiments 
show that the prediction results improve when more 
protein interaction data is available. As well, it could 
be concluded that if the available data of the protein 
interactions increases, through the application of the 
new technologies, the results of this approach will be 
more promising.

6. Conclusion
Among the most important organelles of the eukaryote 
cells are mitochondria. Knowing the location of each 
protein in a mitochondrion is significant. One can predict 
the function of the proteins based on their locations. 
Therefore, the main purpose of this study was to predict 
the protein sub-mitochondrial locations. In the previous 
studies, different features from analyzing amino acids 
and protein sequences were studied. However, so far 
the interactions between proteins and their effects on 
the protein localization prediction were not studied. 
Therefore, in this study, we focused on this feature to 
make it known whether it could improve the results. 
Since protein interactions occur between the proteins 
in the same or adjacent locations, they may improve the 

accuracy of the results. For this purpose, we have used 
some of the well- known algorithms and used features 
like amino acid composition, D-peptide composition, 
pseudo amino acid composition, functional domain 
composition, position-specific scoring matrix, pairwise 
sequence alignment - Smith-Waterman, Gene ontology 
(GO) information, and then tested the effects of adding 
the protein interaction data as another feature. Different 
classification methods such as Support Vector Machines, 
K Nearest Neighbors, Naive Bayes, Decision Tree and 
Random Forest were tested. The best results were for 
Random Forest and the obtained accuracy was 88.96%. 
We have also tested the protein interaction data alone to 
investigate how it can predict the locations alone. The 
results were tested in different modes and it was shown 
that this feature can separately distinguish the locations 
well. Finally, the results of our experiments show that 
protein interaction data has a significant impact on the 
prediction of the protein localization in the mitochondria.
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