1. Nathan C, Cars O. Antibiotic resistance—problems, progress,
and prospects. N Engl J Med. 2014;371(19):1761-1763. doi:
10.1056/NEJMp14080402. Peterson JW. Bacterial pathogenesis. Medical Microbiology.
4th edition: University of Texas Medical Branch at Galveston;
1996.
3. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 million
people die a year due to antimicrobial resistance by 2050?.
PLoS Med. 2016;13(11):e1002184. doi: 10.1371/journal.pmed.
1002184
4. Gootz TD. The global problem of antibiotic resistance. Crit Rev
Immunol. 2010;30(1). doi: 10.1615/CritRevImmunol.v30.i1.60
5. Mondol MAM, Shin HJ, Islam MT. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs. 2013;11(8):2846-2872. doi: 10.3390/
md11082846
6. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem.
2009;78:119-146. doi: 10.1146/annurev.biochem.78.082907.145923
7. Poosarla A, Krishna RM. Isolation of potent antibiotic producing Actinomycetes from marine sediments of Andaman and
Nicobar Marine Islands. J Microbiol Antimicrob. 2013;5(1):6-
12. doi: 10.5897/JMA11.075
8. Attimarad SL, Ediga GN, Karigar AA, Karadi R, Chandrashekhar N, Shivanna C. Screening, isolation and purification of antibacterial agents from marine actinomycetes. Int Curr Pharm
J. 2012;1(12):394-402. doi: 10.3329/icpj.v1i12.12448
9. Al-Zereini W. Natural products from marine bacteria (Doctoral dissertation, Kaiserslautern, Techn. Univ., Diss., 2006).
10. Burja AM, Banaigs B, Abou-Mansour E, Burgessd JG, Wrighta
PC. Marine cyanobacteria- a prolific source of natural products. Tetrahedron. 2001;57:9347-9377. doi: 10.1016/s0040-4020
(01)00931-0
11. Bhatnagar I, Kim S-K. Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective.
Environ Toxicol Pharmacol. 2012;34(3):631-643. doi: 10.1016/j.
etap.2012.08.016
12. Ravikumar S, Krishnakumar S, Inbaneson SJ, Gnanadesigan M.
Antagonistic activity of marine actinomycetes from Arabian
Sea coast. Arch Appl Sci Res. 2010;2(6):273-280.
13. Jensen P, Fenical W. Marine bacterial diversity as a resource for
novel microbial products. J Ind Microbiol. 1996;17(5):346-351.
doi: 10.1007/BF01574765
14. Valentine DL. Adaptations to energy stress dictate the ecology
and evolution of the Archaea. Nat Rev Microbiol. 2007;5(4):316-
323. doi: 10.1038/nrmicro1619
15. Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P,
Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications
as an aquaculture probiotic. Mar Drugs. 2010;8(4):1153-1177.
doi: 10.3390/md8041153
16. Agah H, Elskens M, Fatemi SMR, Owfi F, Baeyens W, Leermakers M. Mercury speciation in the Persian Gulf sediments.
Environ Monit Assess. 2009;157(1-4):363-373. doi: 10.1007/
s10661-008-0541-x
17. Darabpour E, Ardakani MR, Motamedi H, Ronagh MT.
Isolation of a potent antibiotic producer bacterium, especially against MRSA, from northern region of the Persian
Gulf. Bosnian J Basic Med Sci. 2012;12(2):108. doi: 10.17305/
bjbms.2012.2509
18. Mozafari H, & Raeis A.S. The impact of physical factors (wind
and sea surface temperature) on the geopolitics of the Persian
Gulf. J Plotical Int Res. 2009; 1(3):163-186.
19. Jayadev A, Lekshmi M. Screening and Isolation of Protease
producing Marine Bacteria. Emergent Life Sci Res. 2016;2:73-
76. doi:
20. Yeon S-H, Jeong W-J, Park J-S. The diversity of culturable organotrophic bacteria from local solar salterns. J Microbiol.
2005;43(1):1-10.
21. Asthana RK, Tripathi MK, Srivastava A, Singh AP, Singh SP,
Nath G, et al. Isolation and identification of a new antibacterial
entity from the Antarctic Cyanobacterium Nostoc CCC 537. J
Appl Phycol. 2009;21(1):81. doi: 10.1007/s10811-008-9328-2
22. Mahato N, Sinha M, Sharma K, Koteswararao R, Cho MH. Modern Extraction and Purification Techniques for Obtaining High
Purity Food-Grade Bioactive Compounds and Value-Added
Co-Products from Citrus Wastes. Foods. 2019;8(11):523. doi:
10.3390/foods8110523
23. Darabpour E, Ardakani MR, Motamedi H, Ghezelbash G,
Ronagh MT. Isolation of an antibiotic producer Pseudomonas
sp. from the Persian Gulf. Asian Pac J Trop Med. 2010;3(4):318-
321. doi: 10.1016/S1995-7645(10)60077-6
24. Xiong H, Qi S, Xu Y, Miao L, Qian P-Y. Antibiotic and antifouling compound production by the marine-derived fungus
Cladosporium sp. F14. J Hydro-Environ Res. 2009;2(4):264-270.
doi: 10.1016/j.jher.2008.12.002
25. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, et
al. Bergey’s manual of systematic bacteriology: Volume 3: The
Firmicutes. Springer Sci Business Media; 2011. doi: 10.1007/
b92997
26. Simair AA, Khushk I, Qureshi AS, Bhutto MA, Chaudhry HA,
Ansari KA, et al. Amylase production from thermophilic Bacillus sp. BCC 021-50 isolated from a marine environment.
Fermentation. 2017;3(2):25. doi: 10.3390/fermentation3020025
27. Puntambekar AN & Dake MS. Isolation, purification , and
optimization of thermophilic ana alkaliphilic protease origination from hot water spring bacteria. Asian J Pharm Clin Res.
2017;10(9):284-291. doi: 10.22159/ajpcr.2017.v10i9.19717
28. Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci
Afr. 2020;8:e00279. doi: 10.1016/j.sciaf.2020.e00279
29. Khan IA, Jahan P, Hasan Q, Rao P. Genetic confirmation of
T2DM meta-analysis variants studied in gestational diabetes mellitus in an Indian population. Diabetes Metab Syndr.
2019;13(1):688-694. doi: 10.1016/j.dsx.2018.11.035
30. Anantha PS, Deventhiran M, Saravanan P, Anand D, Rajarajan S. A comparative GC-MS analysis of bacterial secondary
metabolites of Pseudomonas species. The Pharma Innovation.
2016; 5(4, Part B):84.
31. Darabpour E, Ardakani MR, Motamedi H, Ronagh MT. Isolation of a broad spectrum antibiotic producer bacterium, Pseudoalteromonas piscicida PG-02, from the Persian Gulf. Bangladesh J Pharmacol. 2011;6(2):74-83. doi: 10.3329/bjp.v6i2.8592
32. Vijayan K, Singh IB, Jayaprakash N, Alavandi S, Pai SS, Preetha R, et al. A brackishwater isolate of Pseudomonas PS-102,
a potential antagonistic bacterium against pathogenic vibrios
in penaeid and non-penaeid rearing systems. Aquaculture.
2006;251(2-4):192-200. doi: 10.1016/j.aquaculture.2005.10.010
33. Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as
a potential source of antibiotics and biofilm inhibitors. Biotechnol Rep. 2021; 30:e00613. doi: 10.1016/j.btre.2021.e00613
34. Mondol M, Shin H, Islam M. Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs. 2013;11(8):2846-2872. doi: 10.3390/35. Chau KM, Van Quyen D, Fraser JM, Smith AT, Van TTH,
Moore RJ. Broad spectrum antimicrobial activities from
spore-forming bacteria isolated from the Vietnam Sea. PeerJ.
2020;8:e10117. doi: 10.7717/peerj.10117
36. Liu Y, Teng K, Wang T, Dong E, Zhang M, Tao Y, et al. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. J Appl Microbiol.
2020;128(1):242-254. doi: 10.1111/jam.14459
37. Feliatra F, Batubara UM, Nurulita Y, Lukistyowati I, Setiaji J.
The potentials of secondary metabolites from Bacillus cereus SN7 and Vagococcus fluvialis CT21 against fish pathogenic
bacteria. Microb Pathog. 2021; 158:105062. doi: 10.1016/j.micpath.2021.105062
38. Prieto ML, O’Sullivan L, Tan SP, McLoughlin P, Hughes H,
O’Connor PM, et al. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by
seaweed-derived Bacillus spp. Mar Drugs. 2012;10(10):2280-
2299. doi: 10.3390/md10102280
39. Siefert JL, Larios-Sanz M, Nakamura LK, Slepecky RA, Paul JH,
Moore ER, et al. Phylogeny of marine Bacillus isolates from the
Gulf of Mexico. Curr Microbiol. 2000;41(2):84-88. doi: 10.1007/
s002840010098
40. Cherian T, Yalla SK, Mohanraju R. Antimicrobial potential
of methanolic extract of Bacillus aquimaris isolated from the
marine waters of Burmanallah coast, South Andaman. Int
J Bio-Pharma Res 2019;8(12):2806-2813. doi: 10.21746/ijbpr.2019.8.12.1
41. Chu J, Wang Y, Zhao B, Zhang X-m, Liu K, Mao L, et al. Isolation and identification of new antibacterial compounds from
Bacillus pumilus. Appl Microbiol Biotechnol. 2019;103(20):8375-
8381. doi: 10.1007/s00253-019-10083-y
42. Odekina PA, Agbo MO, Omeje EO. Antimicrobial and Antioxidant Activities of Novel Marine Bacteria (Bacillus 2011SOCCUF3) Isolated from Marine Sponge (Spongia officinalis).
Ulum-i Daroei. 2020;26(1):82-87. doi: 10.34172/PS.2019.59
43. Harounabadi S. The survey of molecular and antimicrobial
activity of isolated bacteria from the Caspian Sea. Iran J Med
Microbiol . 2016;10(16-23).
44. Norouzi H, Khorasgani MR, Danesh A. Anti-MRSA activity of a bioactive compound produced by a marine Streptomyces and its optimization using statistical experimental
design. Iran J Basic Med Sci. 2019;22(9):1073. doi: 10.22038/
ijbms.2019.33880.8058
45. Darabpour E, Ardakani MR, Motamedi H, Ronagh MTJ,.
Isolation of a broad spectrum antibiotic producer bacterium,
Pseudoalteromonas piscicida PG-02, from the Persian Gulf.
Bangladesh J Pharmacol. 2011;6(2):74-83. doi: 10.3329/bjp.
v6i2.8592
46. Baharudin MMA-a, Ngalimat MS, Mohd Shariff F, Balia Yusof
ZN, Karim M, Baharum SN, et al. Antimicrobial activities of
Bacillus velezensis strains isolated from stingless bee products
against methicillin-resistant Staphylococcus aureus. PloS One.
2021;16(5):e0251514. doi:10.1371/journal.pone.0251514
47. Graça AP, Bondoso J, Gaspar H, Xavier JR, Monteiro MC, de
la Cruz M, et al. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus
(Astrophorida, Geodiidae). PLoS One. 2013;8(11):e78992. doi:
10.1371/journal.pone.0078992
48. Fariq A, Yasmin A, Jamil M. Production, characterization and
antimicrobial activities of bio-pigments by Aquisalibacillus
elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas
aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles. 2019;23(4):435-449. doi: 10.1007/s00792-
019-01095-7
49. Srilekha V, Krishna G, Srinivas VS, Charya MS. Antimicrobial
evaluation of bioactive pigment from Salinicoccus sp isolated
from Nellore sea coast. Int J Biotechnol Biochem. 2017;13:211-
217.
50. Bibi F, Naseer MI, Azhar EI. Assessing the diversity of bacterial
communities from marine sponges and their bioactive compounds. Saudi J Biol Sci. 2021;28(5):2747-2754. doi: 10.1016/j.
sjbs.2021.03.042
51. Velmurugan S, Raman K, Viji VT, Donio M, Jenifer JA, Babu
MM, et al. Screening and characterization of antimicrobial secondary metabolites from Halomonas salifodinae MPM-TC and
its in vivo antiviral influence on Indian white shrimp Fenneropenaeus indicus against WSSV challenge. J King Saud Univ, Sci.
2013;25(3):181-190. doi: 10.1016/j.jksus.2013.03.002
52. Debashish G, Malay S, Barindra S, Joydeep M. Marine enzymes. Mar Biotechnol. 2005;1:189-218. doi: 10.1007/b135785
53. Siwach A, Verma PKJBc. Synthesis and therapeutic potential of
imidazole containing compounds. BMC Chem. 2021;15(1):1-
69. doi: 10.1186/s13065-020-00730-1
54. Graz M, Hunt A, Jamie H, Grant G, Milne P. Antimicrobial activity of selected cyclic dipeptides. Die Pharmazie. 1999;
54(10):772-775.
55. Ström K, Sjögren J, Broberg A, Schnürer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides
cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and
3-phenyllactic acid. Appl Environ Microbiol. 2002;68(9):4322-
4327. doi: 10.1128/AEM.68.9.4322-4327.2002
56. Tan LT-H, Chan K-G, Chan CK, Khan TM, Lee L-H, Goh
B-H. Antioxidative potential of a Streptomyces sp. MUM292
isolated from mangrove soil. BioMed Res Int. 2018;2018. doi:
10.1155/2018/4823126
57. Takaya Y, Furukawa T, Miura S, Akutagawa T, Hotta Y, Ishikawa N, et al. Antioxidant constituents in distillation residue
of Awamori spirits. J Agric Food Chem. 2007;55(1):75-79. doi:
10.1021/jf062029d
58. Ser H-L, Palanisamy UD, Yin W-F, Abd Malek SN, Chan K-G,
Goh B-H, et al. Presence of antioxidative agent, Pyrrolo [1, 2-a]
pyrazine-1, 4-dione, hexahydro-in newly isolated Streptomyces
mangrovisoli sp. nov. Frontiers In Microbiology. 2015;6:854. doi:
10.3389/fmicb.2015.00854
59. Rajivgandhi GN, Ramachandran G, Kanisha CC, Li J-L, Yin L,
Manoharan N, et al. Anti-biofilm compound of 1, 4-diaza-2,
5-dioxo-3-isobutyl bicyclo [4.3. 0] nonane from marine Nocardiopsis sp. DMS 2 (MH900226) against biofilm forming K.
pneumoniae. J King Saud Univ, Sci. 2020;32 (8): 3495-3502. doi:
10.1016/j.jksus.2020.10.012