1. Stone JK, Bacon CW, White JF. An overview of endophytic
microbes: Endophytism Defined. Microbial Endophytes, Marcel
Dekker, New York, 3-29. doi: 10.1201/9781482277302-1
2. Strobel GA. Endophytes as sources of bioactive products.
Microbes Infect. 2003;5(6):535-544. doi: 10.1016/s1286-4579
(03)00073-x
3. Zhang JX, Gu YB, Chi FM, Ji ZR, Wu JY, Dong QL, et al.
Bacillus amyloliquefaciens GB1 can effectively control
apple valsa canker. Biol Control. 2015;88:1-7. doi: 10.1016/j.
biocontrol.2015.04.022
4. Hassani MA, Duran P, Hacquard S. Microbial interactions
within the plant holobiont. Microbiome. 2018;6:58. doi: 10.
1186/s40168-018-0445-0
5. Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X, et al.
Improvement of cadmium uptake and accumulation in Sedum
alfredii by endophytic bacteria Sphingomonas SaMR12:
effects on plant growth and root exudates. Chemosphere.
2014;117:367-373. doi: 10.1016/j.chemosphere.2014.07.078
6. Pavlo A, Leonid O, Iryna Z, Natalia K, Maria PA. Endophytic
bacteria enhancing growth and disease resistance of potato
(Solanum tuberosum L.). Biol Control. 2011;56(1):43-49. doi:
10.101 6/j.biocontrol.2010.09.014
7. Kukla M, Plociniczak T, Piotrowska-Seget Z. Diversity of
endophytic bacteria in Lolium perenne and their potential
to degrade petroleum hydrocarbons and promote plant
growth. Chemosphere. 2014;117:40-46. doi: 10.1016/j.chemo
sphere.2014.05.055
8. Erfandoust R, Habibipour R, Soltani J. Antifungal activity of
endophytic fungi from Cupressaceae against human pathogenic
Aspergillus fumigatus and Aspergillus niger. J Mycol Med.
2020;30(3):100987. doi: 10.1016/j.mycmed.2020.100987.
9. Khan MS, Gao J, Munir I, Zhang M, Liu Y, Moe TS, et al.
Characterization of Endophytic Fungi, Acremonium sp.,
from Lilium davidii and Analysis of Its Antifungal and Plant
Growth-Promoting Effects. Biomed Res Int. 2021;9930210.
doi: 10.1155/2021/9930210
10. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, et
al. Current status of persistent organic pesticides residues in
air, water, and soil, and their possible effect on neighboring
countries: A comprehensive review of India. Sci Total Environ.
2015;511:123-137. doi: 10.1016/j. scitotenv.2014.12.041
11. Akhter W, Bhuiyan MKA, Sultana F, Hossain MM. Integrated
effect of microbial antagonist, organic amendment and
fungicide in controlling seedling mortality (Rhizoctonia
solani) and improving yield in pea (Pisum sativum L.). CR
Biol. 2015;338(1):21-28. doi: 10.1016/j.crvi.2014. 10.003.
12. Ben GA, Amri I, Hanana M, Gargouri S, Jamoussi B, RomaneA, et al. Tetraclinis articulata (Vahl.) masters essential oil
from Tunisia: chemical characterization and herbicidal and
antifungal activities assessment. Ind Crop Prod. 2016;83:113-
117. doi: 10.1016/j.indcrop.2015.12.026
13. Stević T, Berić T, Šavikin K, Soković M, Gođevac D, Dimkić I,
et al. Antifungal activity of selected essential oils against fungi
isolated from medicinal plant. Ind Crop Prod. 2014;55:116-
122. doi: 10.1016/j.indcrop.2014. 02.011
14. Chen JL, Sun SZ, Miao CP, Wu K, Chen YW, Xu LH, et al.
Endophytic Trichoderma gamsii YIM PH30019: a promising
biocontrol agent with hyperosmolar, mycoparasitism, and
antagonistic activities of induced volatile organic compounds
on root-rot pathogenic fungi of Panax notoginseng. J Ginseng
Res. 2016;40(4):315-324. doi: 10.1016/j.jgr.2015.09.006
15. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, et al. Recent
developments and future prospects of antimicrobial metabolites
produced by endophytes. Microbiol Res. 2010;165(6):437-
449. doi: 10.1016/j.micres.2009.11.009
16. Malhadas C, Malheiro R, Pereira JA, Pinho PG, Baptista P.
Antimicrobial activity of endophytic fungi from olive tree
leaves. World J Microb Biot. 2017;33(3):46. doi: 10.1007/
s1127 4-017-2216-7
17. Martínez ML, Labuckas DO, Lamarque AL, Maestri DM.
Walnut (Juglans regia L.): Genetic resources, chemistry, byproducts. J Sci Food Agric. 2010;90(12):1959-1967. doi:
10.1002/jsfa.4059
18. Kole C, Hall TC. Compendium of Transgenic Crop Plants
(Kole/Transgenics). Persian Walnut. 2008;4:285-300. doi:
10.1002/9781405181099.k0410
19. Tapia MI, Sánchez-Morgado JR, García-Parra J, Ramírez
R, Hernández T, González-Gómez D. Comparative study
of the nutritional and bioactive compounds content of four
walnut (Juglans regia L.) cultivars. J Food Compos Anal.
2013;31(2):232-237. doi: 10.1016/j.jfca.2013.06.004
20. Salejda AM, Janiewicz U, Korzeniowska M, Kolniak-Ostek J,
Krasnowska G. Effect of walnut green husk addition on some
quality properties of cooked sausages. LWT-Food Sci Technol.
2016;65:751-757. doi: 10.1016/j.lwt.2015.08.069
21. Jahanban-Esfahlan A, Ostadrahimi A, Tabibiazar M,
Amarowicz R. A Comparative Review on the Extraction,
Antioxidant Content and Antioxidant Potential of Different
Parts of Walnut Fruit and Tree. Molecules. 2019;24(11):2133-
2173. doi: 10.3390/molecules24112133
22. Papoutsi Z, Kassi E, Chinou I, Halabalaki M, Skaltsounis
LA, Moutsatsou P. Walnut extract (Juglans regia L.) and its
component ellagic acid exhibit anti-inflammatory activity
in human aorta endothelial cells and osteoblastic activity in
the cell line KS483. Brit J Nutr. 2008;99(4):715-722. doi:
10.1017/S0007114507837421
23. Tapsell LC, Gillen LJ, Patch CS, Batterham M, Owen A,
Baré M, et al. Including walnuts in a low-fat/modified-fat diet
improves HDL cholesterol-to-total cholesterol ratios in patients
with type 2 diabetes. Diabetes Care. 2004;27(12):2777-2783.
doi: 10.2337/diacare.27.12.2777
24. Kris-Etherton PM. Walnuts decrease risk of cardiovascular
disease: A summary of efficacy and biologic mechanisms. J
Nutr. 2014;144(4):547S-554S. doi: 10.3945/jn.113.182907
25. Zhang Q, Li Y, Xia L. An oleaginous endophyte Bacillus
subtilis HB1310 isolated from thin-shelled walnut and its
utilization of cotton stalk hydrolysate for lipid production.
Biotechnol Biofuels. 2014;7(1):152. doi: 10.1186/s13068-
014-0152-4
26. Wang GK, Yang JS, Huang YF, Liu JS, Tsai CW, Bau DT,
et al. Culture Separation, Identification and Unique AntiPathogenic Fungi Capacity of Endophytic Fungi from Gucheng
Salvia Miltiorrhiza. In Vivo. 2021;35(1):325-332. doi: 10.21873/
in vivo.12263
27. Le TTM, Hoang ATH, Le TTB, Vo TTB, Quyen DV, Chu
HH. Isolation of endophytic fungi and screening of Huperzine
A-producing fungus from Huperzia serrata in Vietnam. Sci
Rep. 2019;9(1):16152. doi: 10.1038/s41598-019-52481-2
28. Kumar S, Stecher G, Tamura K. MEGA7: molecular
evolutionary genetics analysis version 7.0 for bigger datasets.
Mol Biol Evol. 2016;33(7):1870-1874. doi: 10.1093/molbev/
msw054
29. Ling L, Luo H, Li Z, Yang C, Pang M, Tu Y, Cheng W, Jiang
K, Lu L. Isolation, Identification and Characteristic Analysis of
Plant Endophyte Electrogenic Bacteria Shinella zoogloeoides
SHE10. Curr Microbiol. 2022;79(9):268. doi: 10.1007/
s00284-022-02964-9
30. Zhang S, Xu B, Zhang J, Gan Y. Identification of the antifungal
activity of Trichoderma longibrachiatum T6 and assessment
of bioactive substances in controlling phytopathgens.
Pestic Biochem Physiol. 2018;147:59-66. doi: 10.1016/j.
pestbp.2018.02.006
31. Zhu Y, Mao Y, Ma T, Wen X. Effect of culture conditions on
conidia production and enhancement of environmental stress
resistance of Esteya vermicola in solid-state fermentation. J
Appl Microbiol. 2021;131(1):404-412. doi: 10.1111/jam.14964
32. Afzal ZK, Shinwari S, Sikandar S, Shahzad S. Plant beneficial
endophytic bacteria: mechanisms, diversity, host range and
genetic determinants. Microbiol Res.2019;221:36-49. doi:
10.1016/j.micres.2019.02.001
33. Ferreira FV, Musumeci MA. Trichoderma as biological
control agent: scope and prospects to improve efficacy. World
J Microbiol Biotechnol. 2021;37(5):90. doi: 10.1007/s11274-
021-03058 -7
34. Del FG, Cabral A, Nascimento T, Boavida FR, Oliveira
H. Epicoccum layuense a potential biological control
agent of esca-associated fungi in grapevine. PLoS One.
2019;14(3):e0213273. doi: 10.1371/journal.pone.0213273
35. Escribano-Viana R, Portu J, Garijo P, Gutiérrez AR, Santamaría
P, López-Alfaro I, López R, González-Arenzana L. Evaluating
a preventive biological control agent applied on grapevines
against Botrytis cinerea and its influence on winemaking. J Sci
Food Agric. 2018;98(12):4517-4526. doi: 10.1002/jsfa.8977
36. Zhang H, Godana EA, Sui Y, Yang Q, Zhang X, Zhao L.
Biological control as an alternative to synthetic fungicides
for the management of grey and blue mould diseases of table
grapes: a review. Crit Rev Microbiol. 2020;46(4):450-462. doi:
10.1080/1040841X.2020.1794793.
37. Grigoletto DF, Trivella DBB, Tempone AG, Rodrigues
A, Correia AML, Lira SP. Antifungal compounds with
anticancer potential from Trichoderma sp. P8BDA1F1, an
endophytic fungus from Begonia venosa. Braz J Microbiol.
2020;51(3):989-997. doi: 10.1007/s42770-020-00270-9
38. Kumar V, Prasher IB. Antimicrobial potential of endophytic
fungi isolated from Dillenia indica L. and identification
of bioactive molecules produced by Fomitopsis meliae
(Undrew.) Murril. Nat Prod Res. 2022;27:1-5. doi:
10.1080/14786419.2022.2043855
39. Moura GGD, Barros AV, Machado F, Martins AD, Silva CMD,Durango LGC, et al. Endophytic bacteria from strawberry
plants control gray mold in fruits via production of antifungal
compounds against Botrytis cinerea L. Microbiol Res.
2021;251:126793. doi: 10.1016/ j. micres.2021.126793
40. Shentu X, Zhan X, Ma Z, Yu X, Zhang C. Antifungal activity
of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz J Microbiol. 2014;45(1):248-
254. doi: 10. 1590/S1517 -83822014005000036
41. Gao Y, Wang L, Kalscheuer R, Liu Z, Proksch P. Antifungal
polyketide derivatives from the endophytic fungus Aplosporella
javeedii. Bioorgan Med Chem. 2020;28(10):115456. doi: 10.
101 6/j.bmc.2020.115456