1. Motesharezadeh B, Etesami H, Bagheri-Novair S, Amirmokri
H. Fertilizer consumption trend in developing countries vs.
developed countries. Environ Monit Assess.2017;189:103. doi:
10.1007/s10661-017-5812-y
2. Wang Y, Zhu Y, Zhang S, Wang Y. What could promote farmers
to replace chemical fertilizers with organic fertilizers? J Clean
Prod. 2018;199:882-890. doi: 10.1016/j.jclepro.2018.07.222
3. Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W. The effects of
chemical and organic fertilizer usage on rhizosphere soil in tea
orchards. PLoS One.2019;14:e0217018. doi: 10.1371/journal.
pone.0217018
4. Ning CC, Gao PD, Wang BQ, Lin WP, Jiang NH, Cai
KZ. Impacts of chemical fertilizer reduction and organic
amendments supplementation on soil nutrient, enzyme activity
and heavy metal content. J Integr Agric.2017;16(8):1819-1831.
doi: 10.1016/S2095-3119(16)61476-4
5. Pagnani G, Pellegrini M, Galieni A, D’Egidio S, Matteucci F,
Ricci A, Stagnari F, Sergia M, Lo Sterzoa C, Pisantea M, Del Gallo
M. Plant growth-promoting rhizobacteria (PGPR) in Cannabis
sativa ‘Finola’ cultivation: an alternative fertilization strategy
to improve plant growth and quality characteristics. Ind Crops
Prod. 2018;123:75-83. doi: 10.1016/j.indcrop.2018.06.033
6. Tennakoon PLK, Rajapaksha RMCP, Hettiarachchi LSK.
Tea yield maintained in PGPR inoculated field plants despite
significant reduction in fertilizer application. Rhizosphere.
2019;10:100146. doi: 10.1016/j.rhisph.2019.100146
7. Chittora D, Meena M, Barupal T, Swapnil P, Sharma K. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys. Rep.2020;22:100737. doi: 10.1016/j.
bbrep.2020.100737
8. Singh JS, Kumar A, Rai AN, Singh DP. Cyanobacteria:
a precious bio-resource in agriculture, ecosystem, and
environmental sustainability. Front Microbiol.2016;7:529. doi:
10.3389/fmicb.2016.00529
9. Shariatmadari Z, Riahi H, Seyed Hastroudi M, Ghassempour
A, Aghashariatmadary Z. Plant growth promoting cyanobacteria and their distribution in terrestrial habitats
of Iran. Soil Sci Plant Nutr.2013;59(4):535–547. doi:
10.1080/00380768.2013.782253
10. Karthikeyan N, Prasanna R, Nain L, Kaushik BD. Evaluating
the potential of plant growth promoting cyanobacteria as
inoculants for wheat. Eur J Soil Biol.2007;43(1):23-30. doi:
10.1016/j.ejsobi.2006.11.001
11. Seyed Hashtroudi M, Ghassempour AR, Riahi H, Shariatmadari
Z, Khanjir M. Endogenous auxins in plant growth promoting
cyanobacteria – Anabaena vaginicola and Nostoc calcicola. J
Appl Phycol.2012;25:379-386. doi: 10.1007/s10811-012-9872-7
12. Mohan A, Kumar B. Growth performance and yield potential
of cereal crops (wheat, maize and barley) in association with
cyanobacteria. Int J Curr Microbiol Appl Sci.2017;6(10):744–
758. doi: 10.20546/ijcmas.2017.610.091
13. Saadatnia H, Riahi H. Cyanobacteria from paddy fields in
Iran as a biofertilizer in rice plants. Plant Soil Environ.
2009;55(5):207-212. doi: 10.17221/384-PSE
14. Suresh A, Soundararajan S, Elavarasi S, Lewis Oscar F,
Thajuddin N. Evaluation and characterization of the plant
growth promoting potentials of two heterocystous cyanobacteria
for improving food grains growth. Biocatal Agric Biotechno.
2019;17:647-652. doi: 10.1016/j.bcab.2019.01.002
15. Song X, Zhang J, Peng C, Li D. Replacing nitrogen fertilizer
with nitrogen-fixing cyanobacteria reduced nitrogen leaching in
red soil paddy fields. Agric Ecosyst Environ.2021;312:107320.
doi: 10.1016/j.agee.2021.107320
16. Santini G, Biondi N, Rodolfi L, Tredici MR. Plant biostimulants
from cyanobacteria: an emerging strategy to improve yields and
sustainability in agriculture. Plants (Basel).2021;10(4):643.
doi: 10.3390/plants10040643
17. Shariatmadari Z, Riahi H, Abdi M, Seyed Hashtroudi M,
Ghassempour AR. Impact of cyanobacterial extracts on the
growth and oil content of the medicinal plant Mentha piperita
L. J Appl Phycol.2015;27(6):2279-2287. doi: 10.1007/s10811-
014-0512-2
18. Cappellari LDR, Santoro MV, Schmidt A, Gershenzon J,
Banchio E. Induction of essential oil production in Mentha
× piperita by plant growth promoting bacteria was correlated
with an increase in jasmonate and salicylate levels and a
higher density of glandular trichomes. Plant Physiol Biochem.
2019;141:142–153. doi: 10.1016/j.plaphy. 2019.05.030
19. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008;54:712-732.
doi: 10.1111/j.1365-313X. 2008.03446.x
20. Guo K, Sui Y, Li Z, Huang Y, Zhang H, Wang W. Colonization
of Trichoderma viride Tv-1511 in peppermint (Mentha
× piperita L.) roots promotes essential oil production by
triggering ROS-mediated MAPK activation. Plant Physiol
Biochem.2020;151:705-718. doi: 10.1016/j.plaphy.2020.03.042
21. Thakur M, Bhattacharya S, Khosla PK, Puri S. Improving
production of plant secondary metabolites through biotic and
abiotic elicitation. J Appl Res Med Aromat Plants.2019;12:1-12.
doi: 10.1016/j.jarmap.2018.11.004
22. dos Santos Marques CT, Gama EVS, da Silva F, Teles S, Caiafa
AN, Lucchese AM. Improvement of biomass and essential oil
production of Lippia alba (Mill) N.E. Brown with green manures in succession. Ind Crops Prod.2018;112:113-118. doi:
10.1016/j.indcrop.2017.10.065
23. Sarrou E, Ganopoulos I, Xanthopoulou A, Masuero D,
Martens S, Madesis P, Mavromatis A, Chatzopoulou P.
Genetic diversity and metabolic profile of Salvia officinalis
populations: implications for advanced breeding strategies.
Planta.2017;246:201-215. doi: 10.1007/s00425-017-2666-z
24. Shariatmadari Z, Ghorbani Nohooji M, Riahi H, Heidary F.
Optimization of essential oils production in Mentha longifolia
L. using plant growth promoting cyanobacteria. J Med
Plants.2022;21(83):47-59. doi:10.52547/jmp.21.83.47
25. Araújo NAF, Brandäo RM, Barguil BM, Cardoso MdG, Pereira
MMA, Buttrós VHT, Dória J. Plant growth-promoting bacteria
improve growth and modify essential oil in Rose (Rosa hybrid
L.) cv. Black Prince. Front Sustain Food Syst.2020;4:606827.
doi: 10.3389/fsufs.2020.606827
26. Bose SK, Yadav RK, Mishra S, Sangwan RS, Singh AK,
Mishra B, Srivastava AK, Sangwan NS. Effect of gibberellic
acid and calliterpenone on plant growth attributes, trichomes,
essential oil biosynthesis and pathway gene expression in
differential manner in Mentha arvensis L. Plant Physiol
Biochem.2013;66:150-158. doi: 10.1016/j.plaphy.2013.02.011
27. Andersen RA. Algal culturing techniques. Elsevier academic
Press;2005.
28. Komárek J. Süßwasserflora von Mitteleuropa, Bd. 19/3:
Cyanoprokaryota 3. Teil/3rd. Part: Heterocytous Genera.
Springer Berlin Heidelberg Dez;2013.
29. Lichtenthaler HK, Wellburn AR. Determination of total
carotenoids and chlorophyll a and b of leaf extract in different
solvents. Biochem Soc Trans.1983;11(5):591-592. doi:
10.1007/978-94-017-6368-4_3
30. Adams RP. Identification of essential oil components by gas
chromatography-quadrupole mass spectroscopy. Allured
Publishing Corporation, Carol Stream, Illinois;2001.
31. Livak KJ, Schmittgen TD. Analysis of relative gene expression
data using real-time quantitative PCR and the 2− ΔΔCT
method. Methods.2001;25(4):402-408. doi: 10.1006/meth.
2001.1262.
32. Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR,
Langille MGI, Cheng Z. Harnessing the plant microbiome
to promote the growth of agricultural crops. Microbiol
Res.2021;245:126690. doi: 10.1016/j.micres.2020.126690
33. Singh S. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and
providing tolerance against biotic or abiotic stress. J Appl
Microbiol.2014;117(5):1221-1244. doi: 10.1111/jam.12612
34. Nisha R, Kaushik A, Kaushik CP. 2007. Effect of indigenous
cyanobacterial application on structural stability and productivity
of an organically poor semi-arid soil. Geoderma.2007;118:49-56.
doi: 10.1016/j.geoderma.2006.10.007
35. Zarezadeh S, Riahi H, Shariatmadari Z, Sonboli A. Effects of
cyanobacterial suspensions as bio-fertilizers on growth factors
and the essential oil composition of chamomile, Matricaria
chamomilla L. J Appl Phycol .2020;32:1231-1241. doi: 10.
1007/s10811-019-02028-9
36. Chookalaii H, Riahi H, Shariatmadari Z, Mazarei Z, Seyed
Hashtroudi M. Enhancement of total flavonoid and phenolic
contents in Plantago major L. with plant growth promoting
cyanobacteria. J Agric Sci Technol.2020;22(2):505-518.
37. Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X. Arbuscular
mycorrhiza improves photosynthesis and water status of Zea
mays L. under drought stress. Plant Soil Environ. 2012;58:186-
191. doi: 10.17221/23/2011-PSE
38. Anbi AA, Mirshekari B, Eivazi A, Yarnia M, Behrouzyar EK.
PGPRs affected photosynthetic capacity and nutrient uptake
in different Salvia species. J Plant Nutr.2020;43:108-121. doi:
10.1080/01904167.2019.1659342
39. Helaly AA, Hassan SM, Craker LE, Mady E. Effects of
growth-promoting bacteria on growth, yield and nutritional
value of collard plants. Ann Agric Sci.2020;65(1):77-82. doi:
10.1016/j.aoas.2020.01.001
40. Cappellari LDR, Santoro MV, Reinoso H, Travaglia C, Giordano
W, Banchio E. Anatomical, morphological, and phytochemical
effects of inoculation with plant growth- promoting rhizobacteria
on peppermint (Mentha piperita). J Chem Ecol. 2015;41:149-
158. doi: 10.1007/s10886-015-0549-y
41. Santoro MV, Cappellari LDR, Giordano W, Banchio E, Papen
H. Plant growth promoting effects of native Pseudomonas
strains on Mentha piperita (peppermint): an in vitro study.
Plant Biol.2015;17(6):1218-1226. doi: 10.1111/plb.12351
42. Mota ÍA. Variation of yield and composition of essential oils
from Mint and Basil in response to mycorrhizae bio-elicitor
and hydric stress. Master in Pharmacy and Chemistry of
Natural Products, Polytechnic Institute of Bragança;2018.
43. Cappellari L, Santoro MV, Nievas F, Giordano W, Banchio
E. Increase of secondary metabolite content in marigold by
inoculation with plant growth-promoting rhizobacteria. Appl
Soil Ecol.2013;70:16-22. doi:10.1016/j.apsoil.2013.04.001
44. Banchio E, Xie X, Zhang H, Paré PW. Soil bacteria elevate
essential oil accumulation and emissions in sweet basil. J
Agric Food Chem.2009;5:653-657. doi:10.1021/jf8020305
45. Croteau RB, Davis EM, Ringer KL, Wildung MR. (-)-Menthol
biosynthesis and molecular genetics. Naturwissenschaften.
2005;92(12):562-577. doi: 10.1007/s00114-005-0055-0
46. Búfalo J, Rodrigues TM, de Almeida LFR, Tozin LRDS,
Marques MOM, Boaro CSF. PEG-induced osmotic stress
in Mentha × piperita L.: Structural features and metabolic
responses. Plant Physiol Biochem.2016;105:174-184. doi: 10.
1016/j.plaphy.2016.04.009
47. Soleymani F, Taheri H, Shafeinia A. Relative expression
of genes of menthol biosynthesis pathway in peppermint
(Mentha piperita L.) after chitosan, gibberellic acid and methyl
jasmonate treatments. Russ J Plant Physiol. 2017;64:59-66.
doi:10.1134/S1021443717010150
48. Davis EM, Ringer KL, McConkey ME, Croteau R. Monoterpene metabolism. Cloning, expression, and characterization of menthone reductase from peppermint. Plant
Physiol.2005;137(3):873-881. doi: 10.1104/pp.104.053306