1. Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, et al. Environmental
Pollution, A Hidden Culprit for Health Issues. Eco-Environment
& Health. 2022,31-54. doi:10.1016/j.eehl.2022.04.003.
2. Inobeme A, Nayak V, Mathew TJ, Okonkwo S, Ekwoba
L, Ajai AI, et al. Chemometric approach in environmental
pollution analysis: A critical review. J Environ Manage. 2022
309:114653. doi:10.1016/j.jenvman.2022.114653.
3. Machate O, Schmeller DS, Loyau A, Paschke A, Krauss M,
Carmona E, et al. Complex chemical cocktail, containing
insecticides diazinon and permethrin, drives acute toxicity
to crustaceans in mountain lakes. Sci Total Environ. 2022;
828:154456. doi:10.1016/j.scitotenv.2022.154456.
4. Lopes T. S. d. A., Hebler R., Bohner, C, Junior, G.B.A., Sena,
R. F.D. Pesticides removal from industrial wastewater by a
membrane bioreactor and post-treatment with either activated
carbon, reverse osmosis or ozonation. J Environ Chem Eng.
2020;8(6): p. 104538. doi:10.1016/j.jece. 2020.104538
5. Kodali J, Talasila S, Arunraj B, Nagarathnam, R. Activated
Coconut Charcoal as a super adsorbent for the removal of
organophosphorous pesticide monocrotophos from water.
Case Studies in Chemical and Environmental Engineering.
2021;3:p.100099. doi:10.1016/j.cscee.2021.100099
6. Farghali R, A., Sobhi, M., Gaber, S. E., Ibrahim, H., Elshehy,
E. A. Adsorption of organochlorine pesticides on modified
porous Al30/bentonite: Kinetic and thermodynamic studies.
Arab J Chem. 2020;13(8):6730-6740. doi:10.1016/j.arabjc.
2020.06.027.
7. Babacan T, Doğan D, Erdem Ü, Metin AÜ. Magnetically
responsive chitosan-based nanoparticles for remediation
of anionic dyes: Adsorption and magnetically triggered
desorption. Mater Chem Phys. 2022;284:126032. doi:10.1016/
j.matchemphys.2022.126032.
8. Pan C. and LiuP, Palygorskite-based self-separable nanoadsorbent for wastewater treatment. Appl Clay Sci. 2023;239:p.
106955. doi:10.1016/j.clay.2023.106955
9. Toubi F, Deezagi A, Singh G, Oghabian MA, Fatemi SSA,
Arpanaei A. Preparation and Characterization of Double
Shell Fe3
O4
Cluster@Nonporous SiO2
@Mesoporous SiO2
Nanocomposite Spheres and Investigation of their In Vitro
Biocompatibility. Iran J Biotechnol. 2015;13(1):1-10.doi:10.
15171/IJB.1068
10. Jabbar KQ, Barzinjy AA, Hamad SM. Iron oxide nanoparticles: Preparation methods, functions, adsorption and
coagulation/flocculation in wastewater treatment. Environ
Nanotechnol Monit Manag. 2022;17:100661. doi:10. 1016/j.
enmm.2022.100661.
11. Rahimi E, Rezaei S, Mohamadnia S, Valizadeh S, Tavakoli O,
Faramarzi MA. Bioremoval and Detoxification of Anthracene by a
Halophilic Laccase from Alkalibacillus salilacus. Iran JBiotechnol.
2022;20(2):67-78.doi: 10.30498/IJB.2022.287500.3058.
12. Chittal V, Gracias M, Anu A, Saha P, Bhaskara Rao KV.
Biodecolorization and Biodegradation of Azo Dye Reactive
Orange-16 by Marine Nocardiopsis sp. Iran J Biotechnol.
2019;17(3):18-26.doi: 10.29252/IJB.1551
13. Khan A, Malik S, Ali N, Yang Y, Akhter MS, Bilal M. Chapter
2 - Introduction to nano-biosorbents. In: Denizli A, Ali N,
Bilal M, Khan A, Nguyen TA, editors. Nano-Biosorbents for
Decontamination of Water, Air, and Soil Pollution: Elsevier.
2022. p. 29-43.
14. Parastar M, Sheshmani S, Shokrollahzadeh S. Cross-linked
chitosan into graphene oxide-iron(III) oxide hydroxide as nanobiosorbent for Pd(II) and Cd(II) removal. Int J Biol Macromol.
2021;166:229-237. doi: 10.1016/j.ijbiomac.2020.10.160.
15. Oktay B, Eroğlu GÖ, Demir S, Kuruca SE, Apohan NK.
Poly(lactic acid) nanofibers containing phosphorylcholine
grafts for transdermal drug delivery systems. Mater Today
Sustain. 2022;18:100132. doi:10.1016/j.mtsust.2022.100132.
16. Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray
G. Cyclodextrins inclusion complex: Preparation methods,
analytical techniques and food industry applica-tions. Food
Chem. 2022;384:132467. doi:10.1016/j.foodchem. 2022.132467.
17. Mirtajaddini SA, Fathi Najafi M, Vaziri Yazdi SA, Kazemi
Oskuee R. Preparation of Chitosan Nanoparticles as a Capable
Carrier for Antigen Delivery and Antibody Production.
Iran J Biotechnol. 2021;19(4):32-40. doi:10.30498/ijb.2021.
247747.2871.18. Douzandeh-Mobarrez B, Ansari-Dogaheh M, Eslaminejad T,
Kazemipour M, Shakibaie M. Preparation and Evaluation of
the Antibacterial Effect of Magnetic Nanoparticles Containing
Gentamicin: A Preliminary In vitro Study. Iran J Biotechnol.
2018;16(4):287-93.doi:10.21859/ijb.1559.
19. Begum Q, Kalam M, Kamal M, Mahboob T. Biosynthesis,
Characterization, and Antibacterial Activity of Silver
Nanoparticles Derived from Aloe barbadensis Miller Leaf
Extract. Iran J Biotechnol. 2020;18(2):74-81.doi:10.30498/
ijb.2020.145075.2383.
20. Nezamabadi, V., Akhgar, M. R., Tahamipour, B, Rajaei, P.
Biosynthesis and Antibacterial Activity of ZnO Nanoparticles
by Artemisia Aucheri Extract. Iran JBiotechnol. 2020;18(2):82-
91. doi:10.30498/ijb.2020.151379.2426.
21. Safavinia L, Akhgar MR, Tahamipour B, Ahmadi SA. Green
Synthesis of Highly Dispersed Zinc Oxide Nanoparticles
Supported on Silica Gel Matrix by Daphne oleoides Extract and
their Antibacterial Activity. Iran J Biotechnol. 2021;19(1):86-
95. doi:10.30498/IJB.2021.2598.
22. Yusefi M, Shameli K, Su Yee O, Teow SY, Hedayatnasab
Z, Jahangirian H, et al. Green Synthesis of Fe(3)O(4)
Nanoparticles Stabilized by a Garcinia mangostana Fruit Peel
Extract for Hyperthermia and Anticancer Activities. Int J
Nanomed. 2021;16:2515-2532. doi:10.2147/IJN.S284134
23. Yew YP, Shameli K, Miyake M, Kuwano N, Bt Ahmad
Khairudin NB, Bt Mohamad SE, et al. Green Synthesis of
Magnetite (Fe3
O4
) Nanoparticles Using Seaweed (Kappaphycus
alvarezii) Extract. Nanoscale Res Lett. 2016;11(1):276.
doi:10.1186/s11671-016-1498-2.
24. Kiwumulo HF, Muwonge H, Ibingira C, Lubwama M, Kirabira
JB, Ssekitoleko RT. Green synthesis and characterization of
iron-oxide nanoparticles using Moringa oleifera: a potential
protocol for use in low and middle income countries. BMC
Research Notes. 2022;15(1):149. doi:10.1186/s13104-022-
06039-7
25. Mumivand H, Aghemiri A, Aghemiri A, Morshedloo MR,
Nikoumanesh K. Ferulago angulata and Tetrataenium
lasiopetalum: Essential oils composition and antibacterial
activity of the oils and extracts. Biocatal Agric Biotechnol.
2019;22:101407. doi:10.1016/j.bcab.2019.101407.
26. Naderi N, Hajian M, Souri M, Nasr Esfahani MH, Vash
NT. Ferulago angulata extract improves the quality of buck
spermatozoa post-thaw and counteracts the harmful effects of
diazinon and lead. Cryobiology. 2021;98:17-24. doi:10.1016/j.
cryobiol.2021.01.008.
27. Süzgeç-Selçuk S, Dikpınar T. Phytochemical evaluation of
the Ferulago genus and the pharmacological activities of
its coumarin constituents. J Herb Med. 2021;25:100415.
doi:10.1016/j.hermed.2020.100415.
28. Yeganeh-Faal, A. and M. Kadkhodaei, A new combustion
method for the synthesis of copper oxide nano sheet and
Fe3
O4
/CuO magnetic nanocomposite and its application in
removal of diazinon pesticide. Results Eng. 2022;16:p.100599.
doi:10.1016/j.rineng.2022.100599
29. Shi J, Zhang F, Wu S, Guo Z, Huan X, Hu X, et al. Noisefree microbial colony counting method based on hyperspectral
features of agar plates. Food Chem. 2019;274:925-932.
doi:10.1016/j.foodchem.2018.09.058
30. Hirad AH, Ansari SA, Ali MAE, Egeh MA. Microwavemediated synthesis of iron oxide nanoparticles: Photocatalytic,
antimicrobial and their cytotoxicity assessment. Process Biochem.
2022;118:205-214. doi:10.1016/j.procbio.2022.04.022.
31. Yan Z, FitzGerald S, Crawford TM, Mefford OT. Oxidation
of wüstite rich iron oxide nanoparticles via post-synthesis
annealing. J Magn Magn Mater. 2021;539:168405. doi:10.
1016/j.jmmm.2021.168405
32. Yeste MP, Fernández-Ponce C, Félix E, Tinoco M, FernándezCisnal R, García-Villar C, et al. Solvothermal synthesis and
characterization of ytterbium/iron mixed oxide nanoparticles
with potential functionalities for applications as multiplatform
contrast agent in medical image techniques. Ceram Int.
2022;48(21):31191-31202. doi:10.1016/j.ceramint. 2022.06.194.
33. Roy SD, Das KC, Dhar SS. Conventional to green synthesis of
magnetic iron oxide nanoparticles; its application as catalyst,
photocatalyst and toxicity: A short review. Inorg Chem Commun.
2021;134:109050. doi:10.1016/j.inoche.2021.109050
34. Ghasemi Pirbalouti A, Izadi A, Malek Poor F, Hamedi B.
Chemical composition, antioxidant and antibacterial activities
of essential oils from Ferulago angulata. Pharm Biol.
2016;54(11):2515-2520. doi:10.3109/13880209.2016.1162816.
35. Tabar Maleki, S. and S.J. Sadati, Synthesis and investigation
of hyperthermia properties of Fe3
O4
/HNTs magnetic nanocomposite. Inorg Chem Commun.2022;145:110000. doi:
10.1016/j.inoche.2022.110000
36. Sun C, Li C, Tan H, Zhang Y. Synergistic effects of wood fiber
and polylactic acid during co-pyrolysis using TG-FTIR-MS
and Py-GC/MS. Energ Convers Manage. 2019;202:112212.
doi:10.1016/j.enconman.2019.112212.
37. Barjasteh-Askari F, et al. Photocatalytic removal of diazinon
from aqueous solutions: a quantitative systematic review.
Environ Sci Pollut Res. 2022;29(18):26113-26130. doi:10.1007/
s11356-022-18743-9
38. Baghersad, M.H., A. Maleki, and M.R. Khodabakhshi,
Design and development of novel magnetic Lentinan/PVA
nanocomposite for removal of diazinon, malathion, and
diclofenac contaminants. J Contam Hydrol. 2023;256:104193.
doi:10.1016/j.jconhyd.2023.104193
39. Abhari, A., et al. Thermodynamic Studies on the Adsorption
of Organophosphate Pesticides (Diazinon) onto ZnO/
Polyethersulfone Nanocomposites. ChemistrySelect. 2022;7.
doi:10.1002/slct.202103619
40. Nikzad S, A.A. Amooey, and A. Alinejad-Mir, High effective
removal of diazinon from aqueous solutions using the magnetic tragacanth-montmorillonite nanocomposite: isotherm,
kinetic, and mechanism study. Environ Sci Pollut Res.
2021;28(16):20426-20439. doi:10.1007/s11356-020-12238-1
41. Shamsizadeh, Z., et al., Fe3
O4
@SiO2
magnetic nanocomposites
as adsorbents for removal of diazinon from aqueous
solution: isotherm and kinetic study. Pigment Resin Technol.
2020;49:6457-6464. doi:10.1108/PRT-02-2020-0010
42. Heydari S, Zare L, Ghiassi H. Plackett–Burman experimental
design for the removal of diazinon pesticide from aqueous
system by magnetic bentonite nanocomposites. J Appl Res Water
Wastewater. 2019;6(1):45-50. doi:10.22126/arww.2019. 1134
43. Kharat Z, Sadri M, Kabiri M, Herbal Extract Loaded Chitosan/
PEO Nanocomposites as Antibacterial Coatings of Orthopaedic
Implants. Fibers Polym.2021;22(4):989-999. doi:10.1007/
s12221-021-0490-3#citeas
44. Dadi R, Azouani R, Traore M, Mielcarek C, Kanaev A.
Antibacterial activity of ZnO and CuO nanoparticles against
gram positive and gram negative strains. Mater Sci Eng C Mater
Biol Appl. 2019;104:109968. doi:10.1016/j.msec.2019.109968