Green Synthesis of Polylactic acid/Fe3 O4 @β-Cyclodextrin Nanofibrous Nanocomposite Loaded with Ferulago Angulata Extract as a Novel Nano-biosorbent: Evaluation of Diazinon Removal and Antibacterial Activity

Document Type : Research Paper

Authors

1 Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran

2 Department of Chemistry, Kerman branch, Islamic Azad University, Kerman, Iran

Abstract

Background: Organophosphate pesticides are one of the most extensively applied insecticides in agriculture. These 
insecticides persist in the environs and thereby cause severe pollution problems. Iron oxide polymer nanocomposites are 
wastewater remediation agents synthesized by various methods. When compared to chemical processes, green synthesis 
using plant extract is thought to be more cost- and environmentally-friendly. 
Objectives: This study aimed to evaluate the green synthesis of Fe3
O4
@β-Cyclodextrin (Fe3
O4
@β-CD) nanoparticles using 
Ferulago angulata (F. angulata) methanol extract. These nanoparticles are loaded on polylactic acid (PLA) nanofibrous 
nanocomposite along with Ferulago angulata extract (2, 4, and, 6wt %) to produce PLA/Fe3
O4
@β-CD/F. angulata extract 
nanofibrous nanocomposite as a new nano biosorbent. Furthermore, the antibacterial properties of this compound and its 
activity in diazinon removal have been evaluated.
Materials and Methods: Fe3
O4
@β-CD nanoparticles synthesis was performed via co-precipitation method using 
FeCl3
.6H2
O and FeCl2
.4H2
O and β-cyclodextrin, and Ferulago angulata extract. Then polylactic acid/ Fe3
O4
@β-CD / 
F. angulate.extract nanofibrous nanocomposite was prepared by the electrospinning method. Energy-dispersive X-ray 
spectroscopy (EDS), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM), and Fourier transform 
infrared spectroscopy (FTIR) were used to analyze the structure of the nanocomposite. The antibacterial activity of this 
nanocomposite against several fish and human bacterial pathogens, as well as its effectiveness in diazinon elimination, 
have been evaluated in the sections that follow. 
Results: The nanocomposite structure demonstrated that Fe3
O4
 nanoparticles were produced and put into the polylactic 
acid matrix with an average particle size of 40 nm. Furthermore, the results showed that this nanocomposite exhibited 
removal efficiency of diazinon over 80% after 120 minutes under pH=7 and 2.5 gr.L-1 nanocomposite concentration. 
Also, this structure showed above 70% antibacterial ability against Bacillus cereus, Staphylococcus epidermidis and 60% 
antibacterial ability against Streptococcus iniae and Yersinia ruckeri.
Conclusion: Fe3
O4
 nanocomposite synthesis may be accomplished in a delicate and efficient manner by using Ferulago 
angulata to produce Fe3
O4
@-CD nanoparticles. The stability of the nanoparticles was enhanced by combining Ferulago 
angulata extract with polylactic acid nanofibers to create an antibacterial homocomposition nanocomposite. This device 
may be used to remove and disinfect diazinon from aqueous media in an environmentally friendly manner.

Keywords

Main Subjects


1. Xu H, Jia Y, Sun Z, Su J, Liu QS, Zhou Q, et al. Environmental 
Pollution, A Hidden Culprit for Health Issues. Eco-Environment 
& Health. 2022,31-54. doi:10.1016/j.eehl.2022.04.003.
2. Inobeme A, Nayak V, Mathew TJ, Okonkwo S, Ekwoba 
L, Ajai AI, et al. Chemometric approach in environmental 
pollution analysis: A critical review. J Environ Manage. 2022
309:114653. doi:10.1016/j.jenvman.2022.114653.
3. Machate O, Schmeller DS, Loyau A, Paschke A, Krauss M, 
Carmona E, et al. Complex chemical cocktail, containing 
insecticides diazinon and permethrin, drives acute toxicity 
to crustaceans in mountain lakes. Sci Total Environ. 2022; 
828:154456. doi:10.1016/j.scitotenv.2022.154456.
4. Lopes T. S. d. A., Hebler R., Bohner, C, Junior, G.B.A., Sena, 
R. F.D. Pesticides removal from industrial wastewater by a 
membrane bioreactor and post-treatment with either activated 
carbon, reverse osmosis or ozonation. J Environ Chem Eng.
2020;8(6): p. 104538. doi:10.1016/j.jece. 2020.104538
5. Kodali J, Talasila S, Arunraj B, Nagarathnam, R. Activated 
Coconut Charcoal as a super adsorbent for the removal of 
organophosphorous pesticide monocrotophos from water. 
Case Studies in Chemical and Environmental Engineering. 
2021;3:p.100099. doi:10.1016/j.cscee.2021.100099
6. Farghali R, A., Sobhi, M., Gaber, S. E., Ibrahim, H., Elshehy, 
E. A. Adsorption of organochlorine pesticides on modified 
porous Al30/bentonite: Kinetic and thermodynamic studies. 
Arab J Chem. 2020;13(8):6730-6740. doi:10.1016/j.arabjc. 
2020.06.027.
7. Babacan T, Doğan D, Erdem Ü, Metin AÜ. Magnetically 
responsive chitosan-based nanoparticles for remediation 
of anionic dyes: Adsorption and magnetically triggered 
desorption. Mater Chem Phys. 2022;284:126032. doi:10.1016/ 
j.matchemphys.2022.126032.
8. Pan C. and LiuP, Palygorskite-based self-separable nanoadsorbent for wastewater treatment. Appl Clay Sci. 2023;239:p. 
106955. doi:10.1016/j.clay.2023.106955
9. Toubi F, Deezagi A, Singh G, Oghabian MA, Fatemi SSA, 
Arpanaei A. Preparation and Characterization of Double 
Shell Fe3
O4
 Cluster@Nonporous SiO2
@Mesoporous SiO2
Nanocomposite Spheres and Investigation of their In Vitro
Biocompatibility. Iran J Biotechnol. 2015;13(1):1-10.doi:10. 
15171/IJB.1068
10. Jabbar KQ, Barzinjy AA, Hamad SM. Iron oxide nanoparticles: Preparation methods, functions, adsorption and 
coagulation/flocculation in wastewater treatment. Environ
Nanotechnol Monit Manag. 2022;17:100661. doi:10. 1016/j.
enmm.2022.100661.
11. Rahimi E, Rezaei S, Mohamadnia S, Valizadeh S, Tavakoli O, 
Faramarzi MA. Bioremoval and Detoxification of Anthracene by a 
Halophilic Laccase from Alkalibacillus salilacus. Iran JBiotechnol. 
2022;20(2):67-78.doi: 10.30498/IJB.2022.287500.3058. 
12. Chittal V, Gracias M, Anu A, Saha P, Bhaskara Rao KV. 
Biodecolorization and Biodegradation of Azo Dye Reactive 
Orange-16 by Marine Nocardiopsis sp. Iran J Biotechnol. 
2019;17(3):18-26.doi: 10.29252/IJB.1551 
13. Khan A, Malik S, Ali N, Yang Y, Akhter MS, Bilal M. Chapter 
2 - Introduction to nano-biosorbents. In: Denizli A, Ali N, 
Bilal M, Khan A, Nguyen TA, editors. Nano-Biosorbents for 
Decontamination of Water, Air, and Soil Pollution: Elsevier. 
2022. p. 29-43.
14. Parastar M, Sheshmani S, Shokrollahzadeh S. Cross-linked 
chitosan into graphene oxide-iron(III) oxide hydroxide as nanobiosorbent for Pd(II) and Cd(II) removal. Int J Biol Macromol. 
2021;166:229-237. doi: 10.1016/j.ijbiomac.2020.10.160.
15. Oktay B, Eroğlu GÖ, Demir S, Kuruca SE, Apohan NK. 
Poly(lactic acid) nanofibers containing phosphorylcholine 
grafts for transdermal drug delivery systems. Mater Today 
Sustain. 2022;18:100132. doi:10.1016/j.mtsust.2022.100132.
16. Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray 
G. Cyclodextrins inclusion complex: Preparation methods, 
analytical techniques and food industry applica-tions. Food 
Chem. 2022;384:132467. doi:10.1016/j.foodchem. 2022.132467.
17. Mirtajaddini SA, Fathi Najafi M, Vaziri Yazdi SA, Kazemi 
Oskuee R. Preparation of Chitosan Nanoparticles as a Capable 
Carrier for Antigen Delivery and Antibody Production. 
Iran J Biotechnol. 2021;19(4):32-40. doi:10.30498/ijb.2021. 
247747.2871.18. Douzandeh-Mobarrez B, Ansari-Dogaheh M, Eslaminejad T, 
Kazemipour M, Shakibaie M. Preparation and Evaluation of 
the Antibacterial Effect of Magnetic Nanoparticles Containing 
Gentamicin: A Preliminary In vitro Study. Iran J Biotechnol. 
2018;16(4):287-93.doi:10.21859/ijb.1559.
19. Begum Q, Kalam M, Kamal M, Mahboob T. Biosynthesis, 
Characterization, and Antibacterial Activity of Silver 
Nanoparticles Derived from Aloe barbadensis Miller Leaf 
Extract. Iran J Biotechnol. 2020;18(2):74-81.doi:10.30498/
ijb.2020.145075.2383.
20. Nezamabadi, V., Akhgar, M. R., Tahamipour, B, Rajaei, P. 
Biosynthesis and Antibacterial Activity of ZnO Nanoparticles 
by Artemisia Aucheri Extract. Iran JBiotechnol. 2020;18(2):82-
91. doi:10.30498/ijb.2020.151379.2426.
21. Safavinia L, Akhgar MR, Tahamipour B, Ahmadi SA. Green 
Synthesis of Highly Dispersed Zinc Oxide Nanoparticles 
Supported on Silica Gel Matrix by Daphne oleoides Extract and 
their Antibacterial Activity. Iran J Biotechnol. 2021;19(1):86-
95. doi:10.30498/IJB.2021.2598.
22. Yusefi M, Shameli K, Su Yee O, Teow SY, Hedayatnasab 
Z, Jahangirian H, et al. Green Synthesis of Fe(3)O(4) 
Nanoparticles Stabilized by a Garcinia mangostana Fruit Peel 
Extract for Hyperthermia and Anticancer Activities. Int J
Nanomed. 2021;16:2515-2532. doi:10.2147/IJN.S284134
23. Yew YP, Shameli K, Miyake M, Kuwano N, Bt Ahmad 
Khairudin NB, Bt Mohamad SE, et al. Green Synthesis of 
Magnetite (Fe3
O4
) Nanoparticles Using Seaweed (Kappaphycus 
alvarezii) Extract. Nanoscale Res Lett. 2016;11(1):276. 
doi:10.1186/s11671-016-1498-2.
24. Kiwumulo HF, Muwonge H, Ibingira C, Lubwama M, Kirabira 
JB, Ssekitoleko RT. Green synthesis and characterization of 
iron-oxide nanoparticles using Moringa oleifera: a potential 
protocol for use in low and middle income countries. BMC 
Research Notes. 2022;15(1):149. doi:10.1186/s13104-022-
06039-7
25. Mumivand H, Aghemiri A, Aghemiri A, Morshedloo MR, 
Nikoumanesh K. Ferulago angulata and Tetrataenium 
lasiopetalum: Essential oils composition and antibacterial 
activity of the oils and extracts. Biocatal Agric Biotechnol. 
2019;22:101407. doi:10.1016/j.bcab.2019.101407.
26. Naderi N, Hajian M, Souri M, Nasr Esfahani MH, Vash 
NT. Ferulago angulata extract improves the quality of buck 
spermatozoa post-thaw and counteracts the harmful effects of 
diazinon and lead. Cryobiology. 2021;98:17-24. doi:10.1016/j.
cryobiol.2021.01.008.
27. Süzgeç-Selçuk S, Dikpınar T. Phytochemical evaluation of 
the Ferulago genus and the pharmacological activities of 
its coumarin constituents. J Herb Med. 2021;25:100415.
doi:10.1016/j.hermed.2020.100415.
28. Yeganeh-Faal, A. and M. Kadkhodaei, A new combustion 
method for the synthesis of copper oxide nano sheet and 
Fe3
O4
/CuO magnetic nanocomposite and its application in 
removal of diazinon pesticide. Results Eng. 2022;16:p.100599. 
doi:10.1016/j.rineng.2022.100599
29. Shi J, Zhang F, Wu S, Guo Z, Huan X, Hu X, et al. Noisefree microbial colony counting method based on hyperspectral 
features of agar plates. Food Chem. 2019;274:925-932. 
doi:10.1016/j.foodchem.2018.09.058
30. Hirad AH, Ansari SA, Ali MAE, Egeh MA. Microwavemediated synthesis of iron oxide nanoparticles: Photocatalytic, 
antimicrobial and their cytotoxicity assessment. Process Biochem. 
2022;118:205-214. doi:10.1016/j.procbio.2022.04.022.
31. Yan Z, FitzGerald S, Crawford TM, Mefford OT. Oxidation 
of wüstite rich iron oxide nanoparticles via post-synthesis 
annealing. J Magn Magn Mater. 2021;539:168405. doi:10. 
1016/j.jmmm.2021.168405
32. Yeste MP, Fernández-Ponce C, Félix E, Tinoco M, FernándezCisnal R, García-Villar C, et al. Solvothermal synthesis and 
characterization of ytterbium/iron mixed oxide nanoparticles 
with potential functionalities for applications as multiplatform 
contrast agent in medical image techniques. Ceram Int.
2022;48(21):31191-31202. doi:10.1016/j.ceramint. 2022.06.194.
33. Roy SD, Das KC, Dhar SS. Conventional to green synthesis of 
magnetic iron oxide nanoparticles; its application as catalyst, 
photocatalyst and toxicity: A short review. Inorg Chem Commun.
2021;134:109050. doi:10.1016/j.inoche.2021.109050
34. Ghasemi Pirbalouti A, Izadi A, Malek Poor F, Hamedi B. 
Chemical composition, antioxidant and antibacterial activities 
of essential oils from Ferulago angulata. Pharm Biol. 
2016;54(11):2515-2520. doi:10.3109/13880209.2016.1162816.
35. Tabar Maleki, S. and S.J. Sadati, Synthesis and investigation 
of hyperthermia properties of Fe3
O4
/HNTs magnetic nanocomposite. Inorg Chem Commun.2022;145:110000. doi: 
10.1016/j.inoche.2022.110000
36. Sun C, Li C, Tan H, Zhang Y. Synergistic effects of wood fiber 
and polylactic acid during co-pyrolysis using TG-FTIR-MS 
and Py-GC/MS. Energ Convers Manage. 2019;202:112212.
doi:10.1016/j.enconman.2019.112212.
37. Barjasteh-Askari F, et al. Photocatalytic removal of diazinon 
from aqueous solutions: a quantitative systematic review. 
Environ Sci Pollut Res. 2022;29(18):26113-26130. doi:10.1007/
s11356-022-18743-9
38. Baghersad, M.H., A. Maleki, and M.R. Khodabakhshi, 
Design and development of novel magnetic Lentinan/PVA 
nanocomposite for removal of diazinon, malathion, and 
diclofenac contaminants. J Contam Hydrol. 2023;256:104193. 
doi:10.1016/j.jconhyd.2023.104193
39. Abhari, A., et al. Thermodynamic Studies on the Adsorption 
of Organophosphate Pesticides (Diazinon) onto ZnO/
Polyethersulfone Nanocomposites. ChemistrySelect. 2022;7. 
doi:10.1002/slct.202103619
40. Nikzad S, A.A. Amooey, and A. Alinejad-Mir, High effective 
removal of diazinon from aqueous solutions using the magnetic tragacanth-montmorillonite nanocomposite: isotherm, 
kinetic, and mechanism study. Environ Sci Pollut Res.
2021;28(16):20426-20439. doi:10.1007/s11356-020-12238-1
41. Shamsizadeh, Z., et al., Fe3
O4
 @SiO2
 magnetic nanocomposites 
as adsorbents for removal of diazinon from aqueous 
solution: isotherm and kinetic study. Pigment Resin Technol.
2020;49:6457-6464. doi:10.1108/PRT-02-2020-0010
42. Heydari S, Zare L, Ghiassi H. Plackett–Burman experimental 
design for the removal of diazinon pesticide from aqueous 
system by magnetic bentonite nanocomposites. J Appl Res Water 
Wastewater. 2019;6(1):45-50. doi:10.22126/arww.2019. 1134
43. Kharat Z, Sadri M, Kabiri M, Herbal Extract Loaded Chitosan/
PEO Nanocomposites as Antibacterial Coatings of Orthopaedic 
Implants. Fibers Polym.2021;22(4):989-999. doi:10.1007/
s12221-021-0490-3#citeas 
44. Dadi R, Azouani R, Traore M, Mielcarek C, Kanaev A. 
Antibacterial activity of ZnO and CuO nanoparticles against 
gram positive and gram negative strains. Mater Sci Eng C Mater 
Biol Appl. 2019;104:109968. doi:10.1016/j.msec.2019.109968