Gene Networks Analysis of Salmonella Typhimurium Reveals New Insights on Key Genes Involved in Response to Low Water Activity

Document Type : Research Paper

Authors

1 Department of Food Science and Technology, College of Food Industry, Bu-Ali Sina University, Hamedan, Iran

2 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran

3 Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

4 Australian Red Cross Lifeblood, West Melbourne 3003, VIC, Australia 0000-0002-2442-8162

Abstract

Background: When Salmonella enterica serovar Typhimurium, a foodborne bacterium, is exposed to osmotic stress, 
cellular adaptations increase virulence severity and cellular survival.
Objectives: The aim of the gene network analysis of S. Typhimurium was to provide insights into the various interactions 
between the genes involved in cellular survival under low water activity (aw).
Materials and Methods: We performed a gene network analysis to identify the gene clusters and hub genes of S.
Typhimurium using Cytoscape in three food samples subjected to aw stress after 72 hours.
Results: The identified hub genes of S. Typhimurium belonged to down-regulated genes and were related to 
translation, transcription, and ribosome structure in the food samples. The rpsB and Tig were identified as the most 
important of the hub genes. Enrichment analysis of the hub genes also revealed the importance of translation and 
cellular protein metabolic processes. Moreover, the biological process associated with organonitrogen metabolism 
in milk chocolate was identified. According to the KEGG pathway results of gene cluster analysis, cellular responses 
to stress were associated with RNA polymerase, ribosome, and oxidative phosphorylation. Genes encoding RNA 
polymerase activity, including rpoA, rpoB, and rpoZ, were also significantly identified in the KEGG pathways. 
The identified motifs of hub DEGs included EXPREG_00000850, EXPREG_00000b00, EXPREG_000008e0, and 
EXPREG_00000850.
Conclusion: Based on the results of the gene network analysis, the identified hub genes may contribute to adaptation to 
food compositions and be responsible for the development of low water stress tolerance in Salmonella. Among the food 
samples, the milk chocolate matrix leads to more adaptation pathways for S. Typhimurium survival, as more hub genes 
were down-regulated and more motifs were detected. The identified motifs were involved in carbohydrate metabolism, 
carbohydrate transport, electron transfer, and oxygen transfer. 

Keywords

Main Subjects


1. Fabrega A, Vila J. Salmonella enterica serovar Typhimurium
skills to succeed in the host: virulence and regulation. Clin 
Microbiol Rev. 2013; 26(2):308-341. doi:10.1128/CMR.00066-
12
2. Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B, 
Jacobs J, et al. Salmonella Typhi, Paratyphi A, Enteritidis and 
Typhimurium core proteomes reveal differentially expressed 
proteins linked to the cell surface and pathogenicity. Plos 
Negl Trop Dis. 2019;13(5):e0007416. doi: 10.1371/journal.
pntd.0007416
3. Podolak R, Enache E, Stone W, Black DG, Elliott PH. Sources 
and risk factors for contamination, survival, persistence, and 
heat resistance of Salmonella in low-moisture foods. J Food 
Prot. 2010;73(10):1919-1936. doi: 10.4315/0362-028X73.10.1919
4. Kapetanakou AE, Makariti IP, Nazou EΝ, Manios SG, 
Karavasilis K, Skandamis PN. Modelling the effect of osmotic 
adaptation and temperature on the non–thermal inactivation of 
Salmonella spp. on brioche-type products. Int J Food Microbiol. 
2019;296:48-57. doi: 10.1016/j.ijfoodmicro.2019.02.010
5. Mattick KL, Jørgensen F, Legan J, Cole M, Porter J, LappinScott H, et al. Survival and filamentation of Salmonella 
enterica serovar Enteritidis PT4 and Salmonella enterica 
serovar Typhimurium DT104 at low water activity. Appl 
Environ Microbiol. 2000;66(4):1274-129. doi: 10.1128/
AEM.66.4.1274-1279.2000
6. Kurtz JR, Goggins JA, McLachlan JB. Salmonella
infection: Interplay between the bacteria and host immune 
system. Immunol Lett. 2017;190:42-50. doi: 10.1016/j.imlet. 
2017.07.006
7. Shachar D, Yaron S. Heat tolerance of Salmonella enterica
serovars Agona, Enteritidis, and Typhimurium in peanut butter. 
J Food Prot. 2006;69(11):2687-2691. doi: 10.4315/0362-
028x-69.11.2687
8. Krapf T, Gantenbein-Demarchi C. Thermal inactivation of 
Salmonella spp. during conching. LWT- Food Sci Technol. 
2010;43(4):720-723. doi: 10.1016/j.lwt.2009.10.0099. Farakos SM, Frank JF, Schaffner DW. Modeling the 
influence of temperature, water activity and water mobility 
on the persistence of Salmonella in low-moisture foods. Int 
J Food Microbiol. 2013;166(2):280-293. doi: 10.1016/j.
ijfoodmicro.2013.07.007
10. Crucello A, Furtado MM, Chaves MDR, Sant’Ana AS. 
Transcriptome sequencing reveals genes and adaptation 
pathways in Salmonella Typhimurium inoculated in four low 
water activity foods. Food Microbiol. 2019;82:426-435. doi: 
10.1016/j.fm.2019.03.016
11. Wesche AM, Gurtler JB, Marks BP, Ryser ET. Stress, sublethal 
injury, resuscitation, and virulence of bacterial foodborne 
pathogens. J Food Prot. 2009;72(5):1121-1138. doi: 10.4315/ 
0362-028X-72.5.1121
12. Miryala SK, Anbarasu A, Ramaiah S. Discerning molecular 
interactions: A comprehensive review on biomolecular 
interaction databases and network analysis tools. Gene. 
2018;642:84-94. doi: 10.1016/j.gene.2017.11.028
13. Debroy R, Miryala SK, Naha A, Anbarasu A, Ramaiah Gene 
interaction network studies to decipher the multi-drug resistance 
mechanism in Salmonella enterica serovar Typhi CT18 reveal 
potential drug targets. Microb Pathog. 2020;142:104096. doi: 
10.1016/j.micpath.2020.104096
14. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth 
A, Minguez P, et al. The STRING database in 2011: functional 
interaction networks of proteins, globally integrated and 
scored. Nucleic Acids Res. 2011;39(Database issue):D561-568. 
doi: 10.1093/nar/gkq973
15. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. 
cytoHubba: identifying hub objects and sub-networks from 
complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 
4):S11. doi: 10.1186/1752-0509-8-S4-S11
16. Li M, Li D, Tang Y, Wu F, Wang J. CytoCluster: A Cytoscape 
Plugin for Cluster Analysis and Visualization of Biological 
Networks. Int J Mol Sci. 2017;18(9):1880. doi: 10.3390/
ijms18091880
17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry 
JM, et al. Gene ontology: tool for the unification of biology. 
The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-
29. doi: 10.1038/75556
18. Ishihama A. Prokaryotic genome regulation: a revolutionary 
paradigm. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(9):485-
508. doi: 10.2183/pjab.88.485
19. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, 
et al. MEME SUITE: tools for motif discovery and searching. 
Nucleic Acids Res. 2009;37(Web Server issue):W202-208. doi: 
10.1093/nar/gkp335
20. Buske FA, Boden M, Bauer DC, Bailey TL. Assigning roles 
to DNA regulatory motifs using comparative genomics. 
Bioinformatics. 2010;26(7):860-866. doi: 1 0.1093/
bioinformatics/btq049
21. Li M, Chen JE, Wang JX, Hu B, Chen G. Modifying the 
DPClus algorithm for identifying protein complexes based on 
new topological structures. BMC Bioinform. 2008;9(1):398. 
doi: 10.1186/1471-2105-9-398
22. Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. Structural 
basis for the rescue of stalled ribosomes: structure of YaeJ 
bound to the ribosome. Science. 2012;335(6074):1370-1372. 
doi: 10.1126/science.1217443
23. Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosomeassociated protein in Escherichia coli that can hydrolyze 
peptidyl–tRNA on stalled ribosomes. Nucleic Acids Res. 
2011;39(5):1739-1748. doi: 10.1093/nar/gkq1097
24. Gruzdev N, McClelland M, Porwollik S, Ofaim S, Pinto R, 
Saldinger-Sela S. Global transcriptional analysis of dehydrated 
Salmonella enterica serovar Typhimurium. Appl Environ 
Microbiol. 2012;78(22):7866-7875. doi: 10.1128/AEM.01822-
12
25. Maserati A, Lourenco A, Diez-Gonzalez F, Fink RC. iTRAQBased Global Proteomic Analysis of Salmonella enterica
Serovar Typhimurium in Response to Desiccation, Low Water 
Activity, and Thermal Treatment. Appl Environ Microbiol. 
2018;84(18):e00393-003118. doi: 10.1128/AEM.00393-18 
26. Kjeldgaard NO. The kinetics of ribonucleic acid-and protein 
formation in Salmonella typhimurium during the transition 
between different states of balanced growth. Biochim Biophys 
Acta. 1961;49(1):64-76. doi: 10.1016/0006-3002(61)90870-8
27. Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer W. 
Transcriptional and antagonistic responses of Pseudomonas
fluorescens Pf0-1 to phylogenetically different bacterial 
competitors. ISME J. 2011;5(6):973-985. doi: 10.1038/ismej. 
2010.196
28. Chang DE, Smalley DJ, Conway T. Gene expression profiling 
of Escherichia coli growth transitions: an expanded stringent 
response model. Mol Microbiol. 2002;45(2):289-306. doi: 
10.1046/j.1365-2958.2002.03001.x
29. Paul BJ, Ross W, Gaal T, Gourse RL. rRNA transcription in 
Escherichia coli. Annu Rev Genet. 2004;38(1):749-770. doi: 
10.1146/annurev.genet.38.072902.091347
30. Kaczanowska M, Ryden-Aulin M. Ribosome biogenesis and 
the translation process in Escherichia coli. Microbiol Mol Biol 
Rev. 2007;71(3):477-494. doi: 10.1128/MMBR.00013-07
31. Li H, Bhaskara A, Megalis C, Tortorello ML. Transcriptomic 
analysis of Salmonella desiccation resistance. Foodborne 
Pathog Dis. 2012;9(12):1143-1151. doi: 10.1089/fpd.2012.1254
32. Sela S, McClelland M, Irvine C. Investigation of a new 
mechanism of desiccation-stress tolerance in Salmonella. 
BARD Final Report IS-4671-13CR. 2013. doi: 10.32747/2013. 
7598155.bard
33. Li D, He S, Dong R, Cui Y, Shi X. Stress Response Mechanisms 
of Salmonella Enteritidis to Sodium Hypochlorite at the 
Proteomic Level. Foods. 2022;11(18):2912. doi: 10.3390/
foods11182912
34. Maserati A, Fink RC, Lourenco A, Julius ML, Diez-Gonzalez F. 
General response of Salmonella enterica serovar Typhimurium
to desiccation: A new role for the virulence factors sopD and 
sseD in survival. PLoS One. 2017;12(11):e0187692. doi: 
10.1371/journal.pone.0187692
35. Hand SC, Hardewig I. Downregulation of cellular metabolism 
during environmental stress: mechanisms and implications. 
Annu Rev Physiol. 1996;58(1):539-563. doi: 10.1146/annurev.
ph.58.030196.002543
36. Hengge-Aronis R. Survival of hunger and stress: the role of 
rpoS in early stationary phase gene regulation in E. coli. Cell. 
1993;72(2):165-168. doi: 10.1016/0092-8674(93)90655-A
37. Zhang X, Zhu C, Yin J, Sui Y, Wang Y, Zhai G. RpoS affects 
gene expression in Salmonella enterica serovar typhi under 
early hyperosmotic stress. Curr Microbiol. 2017;74(6):757-
761. doi: 10.1007/s00284-017-1243-9
38. Takasu H, Nagata T. High proline content of bacteria-sized 
particles in the western North Pacific and its potential as a 
new biogeochemical indicator of organic matter diagenesis.Front Mar Sci. 2015;2:110. doi: 10.3389/fmars.2015.00110
39. Wood JM. Proline porters effect the utilization of proline 
as nutrient or osmoprotectant for bacteria. J Membr Biol. 
1988;106(3):183-202. doi: 10.1007/BF01872157
40. Csonka LN. Physiological and genetic responses of bacteria 
to osmotic stress. Microbiol Rev. 1989;53(1):121-147. doi: 
10.1128/mr.53.1.121-147.1989
41. Kappes RM, Kempf B, Bremer E. Three transport systems for 
the osmoprotectant glycine betaine operate in Bacillus subtilis: 
characterization of OpuD. J Bacteriol. 1996;178(17):5071-
5079. doi: 10.1128/jb.178.17.5071-5079.1996
42. Anderson R, Menzel R, Wood J. Biochemistry and regulation 
of a second L-proline transport system in Salmonella
typhimurium. J Bacteriol. 1980;141(3):1071-1076. doi: 10. 
1128/jb.141.3.1071-1076.1980
43. Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, 
May G, et al. A physiological role for DNA supercoiling in the 
osmotic regulation of gene expression in S. typhimurium and 
E. coli. Cell. 1988;52(4):569-584. doi: 10.1016/0092-8674(88) 
90470-9