1. Fabrega A, Vila J. Salmonella enterica serovar Typhimurium
skills to succeed in the host: virulence and regulation. Clin
Microbiol Rev. 2013; 26(2):308-341. doi:10.1128/CMR.00066-
12
2. Saleh S, Van Puyvelde S, Staes A, Timmerman E, Barbé B,
Jacobs J, et al. Salmonella Typhi, Paratyphi A, Enteritidis and
Typhimurium core proteomes reveal differentially expressed
proteins linked to the cell surface and pathogenicity. Plos
Negl Trop Dis. 2019;13(5):e0007416. doi: 10.1371/journal.
pntd.0007416
3. Podolak R, Enache E, Stone W, Black DG, Elliott PH. Sources
and risk factors for contamination, survival, persistence, and
heat resistance of Salmonella in low-moisture foods. J Food
Prot. 2010;73(10):1919-1936. doi: 10.4315/0362-028X73.10.1919
4. Kapetanakou AE, Makariti IP, Nazou EΝ, Manios SG,
Karavasilis K, Skandamis PN. Modelling the effect of osmotic
adaptation and temperature on the non–thermal inactivation of
Salmonella spp. on brioche-type products. Int J Food Microbiol.
2019;296:48-57. doi: 10.1016/j.ijfoodmicro.2019.02.010
5. Mattick KL, Jørgensen F, Legan J, Cole M, Porter J, LappinScott H, et al. Survival and filamentation of Salmonella
enterica serovar Enteritidis PT4 and Salmonella enterica
serovar Typhimurium DT104 at low water activity. Appl
Environ Microbiol. 2000;66(4):1274-129. doi: 10.1128/
AEM.66.4.1274-1279.2000
6. Kurtz JR, Goggins JA, McLachlan JB. Salmonella
infection: Interplay between the bacteria and host immune
system. Immunol Lett. 2017;190:42-50. doi: 10.1016/j.imlet.
2017.07.006
7. Shachar D, Yaron S. Heat tolerance of Salmonella enterica
serovars Agona, Enteritidis, and Typhimurium in peanut butter.
J Food Prot. 2006;69(11):2687-2691. doi: 10.4315/0362-
028x-69.11.2687
8. Krapf T, Gantenbein-Demarchi C. Thermal inactivation of
Salmonella spp. during conching. LWT- Food Sci Technol.
2010;43(4):720-723. doi: 10.1016/j.lwt.2009.10.0099. Farakos SM, Frank JF, Schaffner DW. Modeling the
influence of temperature, water activity and water mobility
on the persistence of Salmonella in low-moisture foods. Int
J Food Microbiol. 2013;166(2):280-293. doi: 10.1016/j.
ijfoodmicro.2013.07.007
10. Crucello A, Furtado MM, Chaves MDR, Sant’Ana AS.
Transcriptome sequencing reveals genes and adaptation
pathways in Salmonella Typhimurium inoculated in four low
water activity foods. Food Microbiol. 2019;82:426-435. doi:
10.1016/j.fm.2019.03.016
11. Wesche AM, Gurtler JB, Marks BP, Ryser ET. Stress, sublethal
injury, resuscitation, and virulence of bacterial foodborne
pathogens. J Food Prot. 2009;72(5):1121-1138. doi: 10.4315/
0362-028X-72.5.1121
12. Miryala SK, Anbarasu A, Ramaiah S. Discerning molecular
interactions: A comprehensive review on biomolecular
interaction databases and network analysis tools. Gene.
2018;642:84-94. doi: 10.1016/j.gene.2017.11.028
13. Debroy R, Miryala SK, Naha A, Anbarasu A, Ramaiah Gene
interaction network studies to decipher the multi-drug resistance
mechanism in Salmonella enterica serovar Typhi CT18 reveal
potential drug targets. Microb Pathog. 2020;142:104096. doi:
10.1016/j.micpath.2020.104096
14. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth
A, Minguez P, et al. The STRING database in 2011: functional
interaction networks of proteins, globally integrated and
scored. Nucleic Acids Res. 2011;39(Database issue):D561-568.
doi: 10.1093/nar/gkq973
15. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY.
cytoHubba: identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl
4):S11. doi: 10.1186/1752-0509-8-S4-S11
16. Li M, Li D, Tang Y, Wu F, Wang J. CytoCluster: A Cytoscape
Plugin for Cluster Analysis and Visualization of Biological
Networks. Int J Mol Sci. 2017;18(9):1880. doi: 10.3390/
ijms18091880
17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry
JM, et al. Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-
29. doi: 10.1038/75556
18. Ishihama A. Prokaryotic genome regulation: a revolutionary
paradigm. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(9):485-
508. doi: 10.2183/pjab.88.485
19. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L,
et al. MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 2009;37(Web Server issue):W202-208. doi:
10.1093/nar/gkp335
20. Buske FA, Boden M, Bauer DC, Bailey TL. Assigning roles
to DNA regulatory motifs using comparative genomics.
Bioinformatics. 2010;26(7):860-866. doi: 1 0.1093/
bioinformatics/btq049
21. Li M, Chen JE, Wang JX, Hu B, Chen G. Modifying the
DPClus algorithm for identifying protein complexes based on
new topological structures. BMC Bioinform. 2008;9(1):398.
doi: 10.1186/1471-2105-9-398
22. Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. Structural
basis for the rescue of stalled ribosomes: structure of YaeJ
bound to the ribosome. Science. 2012;335(6074):1370-1372.
doi: 10.1126/science.1217443
23. Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosomeassociated protein in Escherichia coli that can hydrolyze
peptidyl–tRNA on stalled ribosomes. Nucleic Acids Res.
2011;39(5):1739-1748. doi: 10.1093/nar/gkq1097
24. Gruzdev N, McClelland M, Porwollik S, Ofaim S, Pinto R,
Saldinger-Sela S. Global transcriptional analysis of dehydrated
Salmonella enterica serovar Typhimurium. Appl Environ
Microbiol. 2012;78(22):7866-7875. doi: 10.1128/AEM.01822-
12
25. Maserati A, Lourenco A, Diez-Gonzalez F, Fink RC. iTRAQBased Global Proteomic Analysis of Salmonella enterica
Serovar Typhimurium in Response to Desiccation, Low Water
Activity, and Thermal Treatment. Appl Environ Microbiol.
2018;84(18):e00393-003118. doi: 10.1128/AEM.00393-18
26. Kjeldgaard NO. The kinetics of ribonucleic acid-and protein
formation in Salmonella typhimurium during the transition
between different states of balanced growth. Biochim Biophys
Acta. 1961;49(1):64-76. doi: 10.1016/0006-3002(61)90870-8
27. Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer W.
Transcriptional and antagonistic responses of Pseudomonas
fluorescens Pf0-1 to phylogenetically different bacterial
competitors. ISME J. 2011;5(6):973-985. doi: 10.1038/ismej.
2010.196
28. Chang DE, Smalley DJ, Conway T. Gene expression profiling
of Escherichia coli growth transitions: an expanded stringent
response model. Mol Microbiol. 2002;45(2):289-306. doi:
10.1046/j.1365-2958.2002.03001.x
29. Paul BJ, Ross W, Gaal T, Gourse RL. rRNA transcription in
Escherichia coli. Annu Rev Genet. 2004;38(1):749-770. doi:
10.1146/annurev.genet.38.072902.091347
30. Kaczanowska M, Ryden-Aulin M. Ribosome biogenesis and
the translation process in Escherichia coli. Microbiol Mol Biol
Rev. 2007;71(3):477-494. doi: 10.1128/MMBR.00013-07
31. Li H, Bhaskara A, Megalis C, Tortorello ML. Transcriptomic
analysis of Salmonella desiccation resistance. Foodborne
Pathog Dis. 2012;9(12):1143-1151. doi: 10.1089/fpd.2012.1254
32. Sela S, McClelland M, Irvine C. Investigation of a new
mechanism of desiccation-stress tolerance in Salmonella.
BARD Final Report IS-4671-13CR. 2013. doi: 10.32747/2013.
7598155.bard
33. Li D, He S, Dong R, Cui Y, Shi X. Stress Response Mechanisms
of Salmonella Enteritidis to Sodium Hypochlorite at the
Proteomic Level. Foods. 2022;11(18):2912. doi: 10.3390/
foods11182912
34. Maserati A, Fink RC, Lourenco A, Julius ML, Diez-Gonzalez F.
General response of Salmonella enterica serovar Typhimurium
to desiccation: A new role for the virulence factors sopD and
sseD in survival. PLoS One. 2017;12(11):e0187692. doi:
10.1371/journal.pone.0187692
35. Hand SC, Hardewig I. Downregulation of cellular metabolism
during environmental stress: mechanisms and implications.
Annu Rev Physiol. 1996;58(1):539-563. doi: 10.1146/annurev.
ph.58.030196.002543
36. Hengge-Aronis R. Survival of hunger and stress: the role of
rpoS in early stationary phase gene regulation in E. coli. Cell.
1993;72(2):165-168. doi: 10.1016/0092-8674(93)90655-A
37. Zhang X, Zhu C, Yin J, Sui Y, Wang Y, Zhai G. RpoS affects
gene expression in Salmonella enterica serovar typhi under
early hyperosmotic stress. Curr Microbiol. 2017;74(6):757-
761. doi: 10.1007/s00284-017-1243-9
38. Takasu H, Nagata T. High proline content of bacteria-sized
particles in the western North Pacific and its potential as a
new biogeochemical indicator of organic matter diagenesis.Front Mar Sci. 2015;2:110. doi: 10.3389/fmars.2015.00110
39. Wood JM. Proline porters effect the utilization of proline
as nutrient or osmoprotectant for bacteria. J Membr Biol.
1988;106(3):183-202. doi: 10.1007/BF01872157
40. Csonka LN. Physiological and genetic responses of bacteria
to osmotic stress. Microbiol Rev. 1989;53(1):121-147. doi:
10.1128/mr.53.1.121-147.1989
41. Kappes RM, Kempf B, Bremer E. Three transport systems for
the osmoprotectant glycine betaine operate in Bacillus subtilis:
characterization of OpuD. J Bacteriol. 1996;178(17):5071-
5079. doi: 10.1128/jb.178.17.5071-5079.1996
42. Anderson R, Menzel R, Wood J. Biochemistry and regulation
of a second L-proline transport system in Salmonella
typhimurium. J Bacteriol. 1980;141(3):1071-1076. doi: 10.
1128/jb.141.3.1071-1076.1980
43. Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR,
May G, et al. A physiological role for DNA supercoiling in the
osmotic regulation of gene expression in S. typhimurium and
E. coli. Cell. 1988;52(4):569-584. doi: 10.1016/0092-8674(88)
90470-9