CRISPR/Cas9-Induced Fam83h Knock-out Leads to Impaired Wnt/ β-Catenin Pathway and Altered Expression of Tooth Mineralization Genes in Mice

Document Type : Research Paper

Authors

1 Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

2 Department of Molecular Medicine and Medical biotechnology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

3 Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

4 Department of Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

5 Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia

6 Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran

7 Department of Endodontics, Faculty of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran

Abstract

Background: Dental enamel formation is a complex process that is regulated by various genes. One such gene, Family 
With Sequence Similarity 83 Member H (Fam83h), has been identified as an essential factor for dental enamel formation. 
Additionally, Fam83h has been found to be potentially linked to the Wnt/β-catenin pathway.
Objectives: This study aimed to investigate the effects of the Fam83h knockout gene on mineralization and formation of 
teeth, along with mediators of the Wnt/β-catenin pathway as a development aspect in mice.
Materials and Methods: To confirm the Fam83h-KnockOut mice, both Sanger sequencing and Western blot methods 
were used. then used qPCR to measure the expression levels of genes related to tooth mineralization and formation 
of dental root, including Fam20a, Dspp, Dmp1, Enam, Ambn, Sppl2a, Mmp20, and Wnt/β-catenin pathway mediators, 
in both the Fam83h-Knockout and wild-type mice at 5, 11 and 18 days of age. also the expression level of Fgf10 and 
mediators of the Wnt/β-catenin pathway was measured in the skin of both Knockout and wild-type mice using qPCR. A 
histological assessment was then performed to further investigate the results.
Results: A significant reduction in the expression levels of Ambn, Mmp20, Dspp, and Fgf10 in the dental root of Fam83h-Knockout 
mice compared to their wild-type counterparts was demonstrated by our results, indicating potential disruptions in tooth development. 
Significant down-regulation of CK1a, CK1e, and β-catenin in the dental root of Fam83h-Knockout mice was associated with a 
reduction in mineralization and formation-related gene. Additionally, the skin analysis of Fam83h-Knockout mice revealed reduced 
levels of Fgf10, CK1a, CK1e, and β-catenin. Further histological assessment confirmed that the concurrent reduction of Fgf10 
expression level and Wnt/β-catenin genes were associated with alterations in hair follicle maturation.
Conclusions: The concurrent reduction in the expression level of both Wnt/β-catenin mediators and mineralization-related 
genes, resulting in the disruption of dental mineralization and formation, was caused by the deficiency of Fam83h. Our 
findings suggest a cumulative effect and multi-factorial interplay between Fam83h, Wnt/Β-Catenin signaling, and dental 
mineralization-related genes subsequently, during the dental formation process. 

Keywords

Main Subjects


1. Yu S, Quan J, Wang X, Sun X, Zhang X, Liu Y, et al. A novel 
FAM83H mutation in one Chinese family with autosomaldominant hypocalcification amelogenesis imperfecta. Mutagenesis, 2018;33(4):333-340. doi:10.1093/mutage/gey019.
2. Wang SK, Hu Y, Yang J, Smith CE, Richardson AS, Yamakoshi 
Y, et al. Fam83h null mice support a neomorphic mechanism 
for human ADHCAI. Mol Genet Genomic Med. 2016;4(1):46-
67. doi:10.1002/mgg3.178.
3. Nasseri S, Nikkho B, Parsa S, Ebadifar A, Soleimani F, Rahimi 
K, et al. Generation of Fam83h knockout mice by CRISPR/
Cas9-mediated gene engineering. J Cell Biochem.2019. doi:10. 
1002/jcb.28381.
4. Xin W, Wenjun W, Man Q, Yuming Z. Novel FAM83H 
mutations in patients with amelogenesis imperfecta. Sci 
Rep,2017;7(1):6075. doi:10.1038/s41598-017-05208-0.
5. Zhou J, Shen B, Zhang W, Wang J, Yang J, Chen L, et al. 
One-step generation of different immunodeficient mice with 
multiple gene modifications by CRISPR/Cas9 mediated 
genome engineering. Int J Biochem Cell Biol.2014;46:49-55. 
doi:10.1016/j.biocel.2013.10.010.
6. Fulcher LJ, Bozatzi P, Tachie-Menson T, Wu KZL, Cummins 
TD, Bufton JC, et al. The DUF1669 domain of FAM83 
family proteins anchor casein kinase 1 isoforms. Sci 
Signal.2018;11(531). doi:10.1126/scisignal.aao2341.
7. Yang M, Huang W, Yang F, Zhang T, Wang C, Song Y. 
Fam83h mutation inhibits the mineralization in ameloblasts 
by activating Wnt/beta-catenin signaling pathway. Biochem 
Biophys Res Commun. 2018;501(1):206-211. doi:10.1016/j.
bbrc.2018.04.216.
8. Kim KM, Park S-H, Bae JS, Noh SJ, Tao G-Z, Kim JR, et 
al. FAM83H is involved in the progression of hepatocellular 
carcinoma and is regulated by MYC. Sci Rep.2017;7(1):3274. 
doi:10.1038/s41598-017-03639-3.
9. Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, 
Macartney TJ, Wood NT, Varghese J, et al. Characterisation 
of the biochemical and cellular roles of native and pathogenic 
amelogenesis imperfecta mutants of FAM83H. Cellular Signalling, 2020;72:109632. doi: 10.1016/j.cellsig.2020.109632.
10. Xu Z, Wang W, Jiang K, Yu Z, Huang H, Wang F, et al. 
Embryonic attenuated Wnt/β-catenin signaling defines niche 
location and long-term stem cell fate in hair follicle. eLife. 
2015;4:e10567. doi:10.7554/eLife.10567.
11. Ichikawa S, Gerard-O’Riley RL, Acton D, McQueen AK, 
Strobel IE, Witcher PC, et al. A Mutation in the Dmp1 Gene 
Alters Phosphate Responsiveness in Mice. Endocrinology. 
2016;158(3):470-476. doi:10.1210/en.2016-1642.
12. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D’Souza 
R, Hong S, et al. Dentin sialophosphoprotein knockout mouse 
teeth display widened predentin zone and develop defective 
dentin mineralization similar to human dentinogenesis 
imperfecta type III. J Biol Chem. 2003;278(27):24874-24880. 
doi:10.1074/jbc.M303908200.
13. Liang T, Hu Y, Zhang H, Xu Q, Smith CE, Zhang C, et al. 
Mouse Dspp frameshift model of human dentinogenesis 
imperfecta. Sci Rep. 2021;20653(2021). doi:10.1038/s41598-
021-00219-4
14. De La Dure-Molla M, Philippe Fournier B, Berdal A. Isolated 
dentinogenesis imperfecta and dentin dysplasia: revision of 
the classification. European journal of human genetics : Eur J 
Hum Genet. 2014;23(4):445-451. doi:10.1038/ejhg.2014.159.
15. Wang SK, Aref P, Hu Y, Milkovich RN, Simmer JP, El-Khateeb 
M, et al. FAM20A mutations can cause enamel-renal syndrome 
(ERS). PLoS Genet. 2013;9(2):e1003302. doi:10.1371/journal.
pgen.1003302.
16. Li LL, Liu PH, Xie XH, Ma S, Liu C, Chen L, et al. Loss of 
epithelial FAM20A in mice causes amelogenesis imperfecta, 
tooth eruption delay and gingival overgrowth. Int J Oral Sci.
2016;8(2):98-109. doi:10.1038/ijos.2016.14
17. Gasse B, Sire JY. Comparative expression of the four enamel 
matrix protein genes, amelogenin, ameloblastin, enamelin and 
amelotin during amelogenesis in the lizard Anolis carolinensis. 
Evodevo. 2015;6:29. doi:10.1186/s13227-015-0024-4.
18. Yan W-J, Ma P, Tian Y, Wang J-Y, Qin C-L, Feng JQ, et al. The 
importance of a potential phosphorylation site in enamelin on 
enamel formation. Int J Oral Sci. 2017;9(11):e4. doi: 10.1038/
ijos.2017.41.
19. Wang SK, Zhang H, Hu CY, Liu JF, Chadha S, Kim JW, 
et al. FAM83H and Autosomal Dominant Hypocalcified 
Amelogenesis Imperfecta. Journal of dental research. J Dent 
Res. 2021;100(3):293-301. doi: 10.1177/0022034520962731
20. Bronckers AL, Gueneli N, Lullmann-Rauch R, Schneppenheim 
J, Moraru AP, Himmerkus N, et al. The intramembrane protease 
SPPL2A is critical for tooth enamel formation. J Bone Miner 
Res. 2013;28(7):1622-1630. doi: 10.1002/jbmr.1895.
21. Cuéllar-Rivas E, Pustovrh-Ramos MC. THE ROLE OF 
ENAMELYSIN (MMP-20) IN TOOTH DEVELOPMENT. 
SYSTEMATIC REVIEW. Revista Facultad de Odontología 
Universidad de Antioquia, 2015;27:154-176.
22. Hu Y, Smith CE, Richardson AS, Bartlett JD, Hu JC, Simmer JP. 
MMP20, KLK4, and MMP20/KLK4 double null mice define 
roles for matrix proteases during dental enamel formation. 
Mol Genet Genomic Med, 2016;4(2):178-196. doi:10.1002/
mgg3.194.
23. Du W, Du W, Yu H. The Role of Fibroblast Growth Factors 
in Tooth Development and Incisor Renewal. Stem Cells Int.
2018;7549160. doi:10.1155/2018/7549160.
24. Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, 
Ichimori Y, Wakisaka S, et al. Cessation of Fgf10 signaling, 
resulting in a defective dental epithelial stem cell compartment, 
leads to the transition from crown to root formation. 
Development, 2006;133(7):1359-1366. doi:10.1242/dev.02307.
25. Jimenez-Rojo L, Pagella P, Harada H, Mitsiadis TA. Dental 
Epithelial Stem Cells as a Source for Mammary Gland 
Regeneration and Milk Producing Cells In Vivo. Cells. 
2019;8(10):1302. doi: 10.3390/cells8101302.
26. Fan L, Deng S, Sui X, Liu M, Cheng S, Wang Y, et al. 
Constitutive activation of beta-catenin in ameloblasts 
leads to incisor enamel hypomineralization. J Mol Histol. 
2018;49(5):499-507. doi:10.1007/s10735-018-9788-x.
27. Fujii S, Nagata K, Matsumoto S, Kohashi K-i, Kikuchi A, 
Oda Y, et al. Wnt/β-catenin signaling, which is activated 
in odontomas, reduces Sema3A expression to regulate 
odontogenic epithelial cell proliferation and tooth germ 
development. Sci Rep. 2019;9(1):4257. doi:10.1038/s41598-
019-39686-1.
28. Mukherjee A, Dhar N, Stathos M, Schaffer DV, Kane RS. 
Understanding How Wnt Influences Destruction Complex 
Activity and β-Catenin Dynamics. IScience.2018;6:13-21. doi: 
10.1016/j.isci.2018.07.007.
29. Kim KM, Hussein UK, Park S-H, Kang MA, Moon YJ, Zhang 
Z, et al. FAM83H is involved in stabilization of β-cateninand progression of osteosarcomas. J Exp Clin Cancer Res. 
2019;38(1):267. doi: 10.1186/s13046-019-1274-0.
30. Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino 
I, et al. Casein kinase 1 is recruited to nuclear speckles by 
FAM83H and SON. Sci Rep. 2016;6:34472. doi: 10.1038/
srep34472.
31. Bozatzi P, Sapkota GP. The FAM83 family of proteins: from 
pseudo-PLDs to anchors for CK1 isoforms. Biochem Soc 
Trans. 2018;46(3):761-771. doi: 10.1042/BST20160277.
32. Shen C, Nayak A, Melendez RA, Wynn DT, Jackson J, Lee E, et 
al. Casein Kinase 1alpha as a Regulator of Wnt-Driven Cancer. 
Int J Mol Sci. 2020;21(16). doi:10.3390/ijms21165940.
33. Takada R, Hijikata H, Kondoh H, Takada S. Analysis of 
combinatorial effects of Wnts and Frizzleds on beta-catenin/
armadillo stabilization and Dishevelled phosphorylation. Genes to 
cells : devoted to molecular & cellular mechanisms. Genes Cells.
2005;10(9):919-928. doi:10.1111/j.1365-2443.2005.00889.x.
34. Zhou N, Li N, Liu J, Wang Y, Gao J, Wu Y, et al. Persistent Wnt/
beta-catenin signaling in mouse epithelium induces the ectopic 
Dspp expression in cheek mesenchyme. Organogenesis. 
2018;15(1):1-12. doi:10.1080/15476278.2018.1557026.
35. Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, et al. 
Wnt/beta-catenin signaling directs multiple stages of tooth 
morphogenesis. Dev Biol. 2008;313(1):210-224. doi:10.1016/j.
ydbio.2007.10.016
36. Koizumi Y, Kawashima N, Yamamoto M, Takimoto K, Zhou 
M, Suzuki N, et al. Wnt11 expression in rat dental pulp 
and promotional effects of Wnt signaling on odontoblast 
differentiation. Congenit Anom (Kyoto). 2013;53(3):101-108. 
doi:10.1111/cga.12011.
37. Shin M, Suzuki M, Guan X, Smith CE, Bartlett JD. Murine 
matrix metalloproteinase-20 overexpression stimulates cell 
invasion into the enamel layer via enhanced Wnt signaling. Sci 
Rep. 2016;6:29492. doi:10.1038/srep29492.
38. Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, et al. 
Distinct functions for Wnt/beta-catenin in hair follicle stem 
cell proliferation and survival and interfollicular epidermal 
homeostasis. Cell Stem Cell. 2013;13(6):720-733. doi:10.1016/ 
j.stem.2013.10.003.
39. Hsu YC, Fuchs E. A family business: stem cell progeny join 
the niche to regulate homeostasis. Nat Rev Mol Cell Biol.
2013;13(2):103-114. doi:10.1038/nrm3272.
40. Zhang Y, Yang J, Yao H, Zhang Z, Song Y. CRISPR/Cas9-
mediated deletion of Fam83h induces defective tooth 
mineralization and hair development in rabbits. J Cell Mol 
Med. 2022;26(22):5670-5679. doi:10.1111/jcmm.17597.
41. Zhang H, Nan W, Wang S, Si H, Li G. Balance between 
fibroblast growth factor 10 and secreted frizzled-relate protein-1 
controls the development of hair follicle by competitively 
regulating beta-catenin signaling. Biomed Pharmacother. 
2018;103:1531-1537. doi:10.1016/j.biopha.2018.04.149.
42. Zheng X, Huang W, He Z, Li Y, Li S, Song Y. Effects of Fam83h 
truncation mutation on enamel developmental defects in male 
C57/BL6J mice. Bone. 2022;166:116595. doi: 10.1016/j.
bone.2022.116595.
43. Lin WH, Xiang LJ, Shi HX, Zhang J, Jiang LP, Cai PT, et al. 
Fibroblast growth factors stimulate hair growth through betacatenin and Shh expression in C57BL/6 mice. Biomed Res Int. 
2015;730139. doi:10.1155/2015/730139.
44. Kinoshita-Ise M, Tsukashima A, Kinoshita T, Yamazaki Y, 
Ohyama M. Altered FGF expression profile in human scalpderived fibroblasts upon WNT activation: implication of their 
role to provide folliculogenetic microenvironment. Inflamm 
Regen. 2020;40:35. doi:10.1186/s41232-020-00141-8.
45. Puk O, Esposito I, Soker T, Loster J, Budde B, Nurnberg P, 
et al. A new Fgf10 mutation in the mouse leads to atrophy of 
the harderian gland and slit-eye phenotype in heterozygotes: a 
novel model for dry-eye disease? Invest Ophthalmol Vis Sci. 
2009;50(9):4311-4318. doi:10.1167/iovs.09-3451.
46. Zheng W, Ma M, Du E, Zhang Z, Jiang K, Gu Q and Ke B: 
Therapeutic efficacy of fibroblast growth factor 10 in a rabbit 
model of dry eye. Mol Med Rep.2015;12:7344-7350. doi: 
10.3892/mmr.2015.4368