1. Yu S, Quan J, Wang X, Sun X, Zhang X, Liu Y, et al. A novel
FAM83H mutation in one Chinese family with autosomaldominant hypocalcification amelogenesis imperfecta. Mutagenesis, 2018;33(4):333-340. doi:10.1093/mutage/gey019.
2. Wang SK, Hu Y, Yang J, Smith CE, Richardson AS, Yamakoshi
Y, et al. Fam83h null mice support a neomorphic mechanism
for human ADHCAI. Mol Genet Genomic Med. 2016;4(1):46-
67. doi:10.1002/mgg3.178.
3. Nasseri S, Nikkho B, Parsa S, Ebadifar A, Soleimani F, Rahimi
K, et al. Generation of Fam83h knockout mice by CRISPR/
Cas9-mediated gene engineering. J Cell Biochem.2019. doi:10.
1002/jcb.28381.
4. Xin W, Wenjun W, Man Q, Yuming Z. Novel FAM83H
mutations in patients with amelogenesis imperfecta. Sci
Rep,2017;7(1):6075. doi:10.1038/s41598-017-05208-0.
5. Zhou J, Shen B, Zhang W, Wang J, Yang J, Chen L, et al.
One-step generation of different immunodeficient mice with
multiple gene modifications by CRISPR/Cas9 mediated
genome engineering. Int J Biochem Cell Biol.2014;46:49-55.
doi:10.1016/j.biocel.2013.10.010.
6. Fulcher LJ, Bozatzi P, Tachie-Menson T, Wu KZL, Cummins
TD, Bufton JC, et al. The DUF1669 domain of FAM83
family proteins anchor casein kinase 1 isoforms. Sci
Signal.2018;11(531). doi:10.1126/scisignal.aao2341.
7. Yang M, Huang W, Yang F, Zhang T, Wang C, Song Y.
Fam83h mutation inhibits the mineralization in ameloblasts
by activating Wnt/beta-catenin signaling pathway. Biochem
Biophys Res Commun. 2018;501(1):206-211. doi:10.1016/j.
bbrc.2018.04.216.
8. Kim KM, Park S-H, Bae JS, Noh SJ, Tao G-Z, Kim JR, et
al. FAM83H is involved in the progression of hepatocellular
carcinoma and is regulated by MYC. Sci Rep.2017;7(1):3274.
doi:10.1038/s41598-017-03639-3.
9. Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ,
Macartney TJ, Wood NT, Varghese J, et al. Characterisation
of the biochemical and cellular roles of native and pathogenic
amelogenesis imperfecta mutants of FAM83H. Cellular Signalling, 2020;72:109632. doi: 10.1016/j.cellsig.2020.109632.
10. Xu Z, Wang W, Jiang K, Yu Z, Huang H, Wang F, et al.
Embryonic attenuated Wnt/β-catenin signaling defines niche
location and long-term stem cell fate in hair follicle. eLife.
2015;4:e10567. doi:10.7554/eLife.10567.
11. Ichikawa S, Gerard-O’Riley RL, Acton D, McQueen AK,
Strobel IE, Witcher PC, et al. A Mutation in the Dmp1 Gene
Alters Phosphate Responsiveness in Mice. Endocrinology.
2016;158(3):470-476. doi:10.1210/en.2016-1642.
12. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D’Souza
R, Hong S, et al. Dentin sialophosphoprotein knockout mouse
teeth display widened predentin zone and develop defective
dentin mineralization similar to human dentinogenesis
imperfecta type III. J Biol Chem. 2003;278(27):24874-24880.
doi:10.1074/jbc.M303908200.
13. Liang T, Hu Y, Zhang H, Xu Q, Smith CE, Zhang C, et al.
Mouse Dspp frameshift model of human dentinogenesis
imperfecta. Sci Rep. 2021;20653(2021). doi:10.1038/s41598-
021-00219-4
14. De La Dure-Molla M, Philippe Fournier B, Berdal A. Isolated
dentinogenesis imperfecta and dentin dysplasia: revision of
the classification. European journal of human genetics : Eur J
Hum Genet. 2014;23(4):445-451. doi:10.1038/ejhg.2014.159.
15. Wang SK, Aref P, Hu Y, Milkovich RN, Simmer JP, El-Khateeb
M, et al. FAM20A mutations can cause enamel-renal syndrome
(ERS). PLoS Genet. 2013;9(2):e1003302. doi:10.1371/journal.
pgen.1003302.
16. Li LL, Liu PH, Xie XH, Ma S, Liu C, Chen L, et al. Loss of
epithelial FAM20A in mice causes amelogenesis imperfecta,
tooth eruption delay and gingival overgrowth. Int J Oral Sci.
2016;8(2):98-109. doi:10.1038/ijos.2016.14
17. Gasse B, Sire JY. Comparative expression of the four enamel
matrix protein genes, amelogenin, ameloblastin, enamelin and
amelotin during amelogenesis in the lizard Anolis carolinensis.
Evodevo. 2015;6:29. doi:10.1186/s13227-015-0024-4.
18. Yan W-J, Ma P, Tian Y, Wang J-Y, Qin C-L, Feng JQ, et al. The
importance of a potential phosphorylation site in enamelin on
enamel formation. Int J Oral Sci. 2017;9(11):e4. doi: 10.1038/
ijos.2017.41.
19. Wang SK, Zhang H, Hu CY, Liu JF, Chadha S, Kim JW,
et al. FAM83H and Autosomal Dominant Hypocalcified
Amelogenesis Imperfecta. Journal of dental research. J Dent
Res. 2021;100(3):293-301. doi: 10.1177/0022034520962731
20. Bronckers AL, Gueneli N, Lullmann-Rauch R, Schneppenheim
J, Moraru AP, Himmerkus N, et al. The intramembrane protease
SPPL2A is critical for tooth enamel formation. J Bone Miner
Res. 2013;28(7):1622-1630. doi: 10.1002/jbmr.1895.
21. Cuéllar-Rivas E, Pustovrh-Ramos MC. THE ROLE OF
ENAMELYSIN (MMP-20) IN TOOTH DEVELOPMENT.
SYSTEMATIC REVIEW. Revista Facultad de Odontología
Universidad de Antioquia, 2015;27:154-176.
22. Hu Y, Smith CE, Richardson AS, Bartlett JD, Hu JC, Simmer JP.
MMP20, KLK4, and MMP20/KLK4 double null mice define
roles for matrix proteases during dental enamel formation.
Mol Genet Genomic Med, 2016;4(2):178-196. doi:10.1002/
mgg3.194.
23. Du W, Du W, Yu H. The Role of Fibroblast Growth Factors
in Tooth Development and Incisor Renewal. Stem Cells Int.
2018;7549160. doi:10.1155/2018/7549160.
24. Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y,
Ichimori Y, Wakisaka S, et al. Cessation of Fgf10 signaling,
resulting in a defective dental epithelial stem cell compartment,
leads to the transition from crown to root formation.
Development, 2006;133(7):1359-1366. doi:10.1242/dev.02307.
25. Jimenez-Rojo L, Pagella P, Harada H, Mitsiadis TA. Dental
Epithelial Stem Cells as a Source for Mammary Gland
Regeneration and Milk Producing Cells In Vivo. Cells.
2019;8(10):1302. doi: 10.3390/cells8101302.
26. Fan L, Deng S, Sui X, Liu M, Cheng S, Wang Y, et al.
Constitutive activation of beta-catenin in ameloblasts
leads to incisor enamel hypomineralization. J Mol Histol.
2018;49(5):499-507. doi:10.1007/s10735-018-9788-x.
27. Fujii S, Nagata K, Matsumoto S, Kohashi K-i, Kikuchi A,
Oda Y, et al. Wnt/β-catenin signaling, which is activated
in odontomas, reduces Sema3A expression to regulate
odontogenic epithelial cell proliferation and tooth germ
development. Sci Rep. 2019;9(1):4257. doi:10.1038/s41598-
019-39686-1.
28. Mukherjee A, Dhar N, Stathos M, Schaffer DV, Kane RS.
Understanding How Wnt Influences Destruction Complex
Activity and β-Catenin Dynamics. IScience.2018;6:13-21. doi:
10.1016/j.isci.2018.07.007.
29. Kim KM, Hussein UK, Park S-H, Kang MA, Moon YJ, Zhang
Z, et al. FAM83H is involved in stabilization of β-cateninand progression of osteosarcomas. J Exp Clin Cancer Res.
2019;38(1):267. doi: 10.1186/s13046-019-1274-0.
30. Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino
I, et al. Casein kinase 1 is recruited to nuclear speckles by
FAM83H and SON. Sci Rep. 2016;6:34472. doi: 10.1038/
srep34472.
31. Bozatzi P, Sapkota GP. The FAM83 family of proteins: from
pseudo-PLDs to anchors for CK1 isoforms. Biochem Soc
Trans. 2018;46(3):761-771. doi: 10.1042/BST20160277.
32. Shen C, Nayak A, Melendez RA, Wynn DT, Jackson J, Lee E, et
al. Casein Kinase 1alpha as a Regulator of Wnt-Driven Cancer.
Int J Mol Sci. 2020;21(16). doi:10.3390/ijms21165940.
33. Takada R, Hijikata H, Kondoh H, Takada S. Analysis of
combinatorial effects of Wnts and Frizzleds on beta-catenin/
armadillo stabilization and Dishevelled phosphorylation. Genes to
cells : devoted to molecular & cellular mechanisms. Genes Cells.
2005;10(9):919-928. doi:10.1111/j.1365-2443.2005.00889.x.
34. Zhou N, Li N, Liu J, Wang Y, Gao J, Wu Y, et al. Persistent Wnt/
beta-catenin signaling in mouse epithelium induces the ectopic
Dspp expression in cheek mesenchyme. Organogenesis.
2018;15(1):1-12. doi:10.1080/15476278.2018.1557026.
35. Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, et al.
Wnt/beta-catenin signaling directs multiple stages of tooth
morphogenesis. Dev Biol. 2008;313(1):210-224. doi:10.1016/j.
ydbio.2007.10.016
36. Koizumi Y, Kawashima N, Yamamoto M, Takimoto K, Zhou
M, Suzuki N, et al. Wnt11 expression in rat dental pulp
and promotional effects of Wnt signaling on odontoblast
differentiation. Congenit Anom (Kyoto). 2013;53(3):101-108.
doi:10.1111/cga.12011.
37. Shin M, Suzuki M, Guan X, Smith CE, Bartlett JD. Murine
matrix metalloproteinase-20 overexpression stimulates cell
invasion into the enamel layer via enhanced Wnt signaling. Sci
Rep. 2016;6:29492. doi:10.1038/srep29492.
38. Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, et al.
Distinct functions for Wnt/beta-catenin in hair follicle stem
cell proliferation and survival and interfollicular epidermal
homeostasis. Cell Stem Cell. 2013;13(6):720-733. doi:10.1016/
j.stem.2013.10.003.
39. Hsu YC, Fuchs E. A family business: stem cell progeny join
the niche to regulate homeostasis. Nat Rev Mol Cell Biol.
2013;13(2):103-114. doi:10.1038/nrm3272.
40. Zhang Y, Yang J, Yao H, Zhang Z, Song Y. CRISPR/Cas9-
mediated deletion of Fam83h induces defective tooth
mineralization and hair development in rabbits. J Cell Mol
Med. 2022;26(22):5670-5679. doi:10.1111/jcmm.17597.
41. Zhang H, Nan W, Wang S, Si H, Li G. Balance between
fibroblast growth factor 10 and secreted frizzled-relate protein-1
controls the development of hair follicle by competitively
regulating beta-catenin signaling. Biomed Pharmacother.
2018;103:1531-1537. doi:10.1016/j.biopha.2018.04.149.
42. Zheng X, Huang W, He Z, Li Y, Li S, Song Y. Effects of Fam83h
truncation mutation on enamel developmental defects in male
C57/BL6J mice. Bone. 2022;166:116595. doi: 10.1016/j.
bone.2022.116595.
43. Lin WH, Xiang LJ, Shi HX, Zhang J, Jiang LP, Cai PT, et al.
Fibroblast growth factors stimulate hair growth through betacatenin and Shh expression in C57BL/6 mice. Biomed Res Int.
2015;730139. doi:10.1155/2015/730139.
44. Kinoshita-Ise M, Tsukashima A, Kinoshita T, Yamazaki Y,
Ohyama M. Altered FGF expression profile in human scalpderived fibroblasts upon WNT activation: implication of their
role to provide folliculogenetic microenvironment. Inflamm
Regen. 2020;40:35. doi:10.1186/s41232-020-00141-8.
45. Puk O, Esposito I, Soker T, Loster J, Budde B, Nurnberg P,
et al. A new Fgf10 mutation in the mouse leads to atrophy of
the harderian gland and slit-eye phenotype in heterozygotes: a
novel model for dry-eye disease? Invest Ophthalmol Vis Sci.
2009;50(9):4311-4318. doi:10.1167/iovs.09-3451.
46. Zheng W, Ma M, Du E, Zhang Z, Jiang K, Gu Q and Ke B:
Therapeutic efficacy of fibroblast growth factor 10 in a rabbit
model of dry eye. Mol Med Rep.2015;12:7344-7350. doi:
10.3892/mmr.2015.4368