1. De Souza SJ, Long M, Gilbert W. Introns and gene evolution.
Genes Cells. 1996;1(6):493-505. doi: 10.1046/j.1365-2443.
1996.d01-264.x
2. Kashima T, Rao N, Manley JL. An intronic element contributes
to splicing repression in spinal muscular atrophy. Proc Natl
Acad Sci U S A. 2007;104(9):3426-3431. doi: 10.1073/pnas.
0700343104
3. Beard WA, Horton JK, Prasad R, Wilson SH. Eukaryotic base
excision repair: new approaches shine light on mechanism.
Annu Rev Biophys. 2019;88:137-162. doi: 10.1146/annurev-bio
chem-013118-111315
4. Poverennaya I, Roytberg M. Spliceosomal introns: features,
functions, and evolution. Biochemistry (Moscow). 2020;85
(7):725-734. doi: 10.1134/s0006297920070019
5. Herbert A, Rich A. RNA processing and the evolution of
eukaryotes. Nat Genet. 1999;21(3):265-269. doi: 10.1038/6780
6. Bouaynaya N, Schonfeld D. The genomic structure: proof of
the role of non-coding DNA. Conf Proc IEEE Eng Med Biol
Soc. 2006;1:4544-4547. doi: 10.1109/iembs.2006.259446
7. Rose AB. Introns as gene regulators: a brick on the accelerator.
Frontiers in genetics. 2019;9:672. doi: 10.3389/fgene.2018.
00672
8. Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster
RL. Heterologous introns can enhance expression of transgenes
in mice. Proc Natl Acad Sci U S A. 1991;88(2):478-482. doi:
10.1073/pnas.88.2.478
9. Cottrell E, Maharaj A, Williams J, Chatterjee S, Cirillo G,
Miraglia del Giudice E, et al. Growth Hormone Receptor
(GHR) 6Ω Pseudoexon Activation: a Novel Cause of Severe
Growth Hormone Insensitivity. J Clin Endocrinol Met. 2021.
doi: 10.1210/clinem/dgab550
10. Nesic D, Cheng J, Maquat LE. Sequences within the last intron
function in RNA 3’-end formation in cultured cells. Mol Cell
Biol. 1993;13(6):3359-3369. doi: 10.1128/mcb.13.6.3359
11. Antoniou M, Geraghty F, Hurst J, Grosveld F. Efficient 3’-
end formation of human beta-globin mRNA in vivo requires
sequences within the last intron but occurs independently of
the splicing reaction. Nucleic Acids Res. 1998;26(3):721-729.
doi: 10.1093/nar/26.3.721
12. Donath M, Mendel R, Cerff R, Martin W. Intron-dependent
transient expression of the maize GapA1 gene. Plant Mol Biol.
1995;28(4):667-676. doi: 10.1007/bf00021192
13. Jia J, Long Y, Zhang H, Li Z, Liu Z, Zhao Y, et al. Posttranscriptional splicing of nascent RNA contributes to
widespread intron retention in plants. Nature Plants.
2020;6(7):780-788. doi: 10.1038/s41477-020-0688-1
14. Nott A, Meislin SH, Moore MJ. A quantitative analysis of intron
effects on mammalian gene expression. RNA. 2003;9(5):607-
617. doi:10.1261/rna.5250403
15. Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon
V, Abou Elela S. Introns are mediators of cell response to
starvation. Nature. 2019;565(7741):612-617. doi: 10.1038/
s41586-018-0859-7
16. Liu H, Lyu HM, Zhu K, Van de Peer Y, Cheng ZM. The
emergence and evolution of intron-poor and intronless
genes in intron-rich plant gene families. The Plant Journal.
2021;105(4):1072-1082. doi: 10.1111/tpj.15088
17. Rohrer J, Conley ME. Transcriptional regulatory elements
within the first intron of Bruton’s tyrosine kinase. Blood.
1998;91(1):214-221. doi: 10.1182/blood.v91.1.214
18. Furger A, O’Sullivan JM, Binnie A, Lee BA, Proudfoot NJ.
Promoter proximal splice sites enhance transcription. Genes
Dev. 2002;16(21):2792-2799. doi: 10.1101/gad.983602
19. Kim DS, Kim TH, Huh JW, Kim IC, Kim SW, Park HS, et al.
Line Fusion Genes: a database of LINE expression in human
genes. BMC Genomics. 2006;7:139. doi: 10.1186/1471-2164-
7-139
20. Eddy J, Maizels N. Conserved elements with potential to form
polymorphic G-quadruplex structures in the first intron of
human genes. Nucleic Acids Res. 2008;36(4):1321-1333. doi:
10.1093/nar/gkm1138
21. Tanaka Y, Asano T, Kanemitsu Y, Goto T, Yoshida Y, Yasuba
K, et al. Positional differences of intronic transposons in
pAMT affect the pungency level in chili pepper through altered
splicing efficiency. The Plant Journal. 2019;100(4):693-705.
doi: 10.1111/tpj.14462
22. Keilwagen J, Hartung F, Grau J. GeMoMa: homology-based
gene prediction utilizing intron position conservation and
RNA-seq data. Gene Prediction: Springer; 2019. p. 161-77.
doi: 10.1007/978-1-4939-9173-0_9
23. Le Hir H, Nott A, Moore MJ. How introns influence and
enhance eukaryotic gene expression. Trends Biochem Sci.
2003;28(4):215-220. doi: 10.1016/s0968-0004(03)00052-5
24. Desterro J, Bak-Gordon P, Carmo-Fonseca M. Targeting
mRNA processing as an anticancer strategy. Nature Reviews
Drug Discovery. 2020;19(2):112-129. doi: 10.1038/s41573-019-
0042-3
25. Jiang W, Geng Y, Liu Y, Chen S, Cao S, Li W, et al. Genomewide identification and characterization of SRO gene family
in wheat: Molecular evolution and expression profiles during
different stresses. Plant Physiology and Biochemistry.
2020;154:590-611. doi: 10.1016/j.plaphy.2020.07.00626. Valadkhan S. snRNAs as the catalysts of pre-mRNA splicing.
Curr Opin Chem Biol. 2005;9(6):603-608. doi: 10.1016/j.
cbpa.2005.10.008
27. Joynt AT, Evans TA, Pellicore MJ, Davis-Marcisak EF,
Aksit MA, Eastman AC, et al. Evaluation of both exonic
and intronic variants for effects on RNA splicing allows for
accurate assessment of the effectiveness of precision therapies.
PLoS Gen. 2020;16(10):e1009100. doi: 10.1371/journal.
pgen.1009100
28. Berget SM, Moore C, Sharp PA. Spliced segments at the 5’
terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S
A. 1977;74(8):3171-3175. doi: 10.1073/pnas.74.8.3171
29. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR.
Antisense masking of an hnRNP A1/A2 intronic splicing
silencer corrects SMN2 splicing in transgenic mice. Am J Hum
Genet. 2008;82(4):834-848. doi: 10.1016/j.ajhg.2008.01.014
30. Borišek J, Casalino L, Saltalamacchia A, Mays SG, Malcovati
L, Magistrato A. Atomic-Level Mechanism of Pre-mRNA
Splicing in Health and Disease. Acc Chem Res. 2020;54(1):144-
154. doi: 10.1021/acs.accounts.0c00578
31. Majewski J, Ott J. Distribution and characterization of
regulatory elements in the human genome. Genome Res.
2002;12(12):1827-1836. doi: 10.1101/gr.606402
32. Faustino NA, Cooper TA. Pre-mRNA splicing and human
disease. Genes Dev. 2003;17(4):419-437. doi: 10.1101/
gad.1048803
33. Nilsen TW. The spliceosome: the most complex macromolecular
machine in the cell? Bioessays. 2003;25(12):1147-1149. doi:
10.1002/bies.10394
34. Tang SJ, Shen H, An O, Hong H, Li J, Song Y, et al. Cisand trans-regulations of pre-mRNA splicing by RNA editing
enzymes influence cancer development. Nature Communicat.
2020;11(1):1-17. doi: 10.1038/s41467-020-14621-5
35. Tarn WY, Steitz JA. Pre-mRNA splicing: the discovery of a
new spliceosome doubles the challenge. Trends Biochem Sci.
1997;22(4):132-137. doi: 10.1016/s0968-0004(97)01018-9
36. Erkelenz S, Poschmann G, Ptok J, Müller L, Schaal H. Profiling
of cis-and trans-acting factors supporting noncanonical splice
site activation. RNA Biology. 2021;18(1):118-130. doi:
10.1080/15476286.2020.1798111
37. Tang SJ, Shen H, An O, Hong H, Li J, Song Y, et al. Cisand trans-regulations of pre-mRNA splicing by RNA editing
enzymes influence cancer development. Nature communicat.
2020;11(1):799. doi: 10.1038/s41467-020-14621-5
38. Moles-Fernández A, Domènech-Vivó J, Tenés A, Balmaña
J, Diez O, Gutiérrez-Enríquez S. Role of splicing regulatory
elements and in silico tools usage in the identification of
deep intronic splicing variants in hereditary breast/ovarian
cancer genes. Cancers. 2021;13(13):3341. doi: 10.3390/
cancers13133341
39. Finke M, Brecht D, Stifel J, Gense K, Gamerdinger M, Hartig
JS. Efficient splicing-based RNA regulators for tetracyclineinducible gene expression in human cell culture and C. elegans.
Nucleic Acids Res. 2021. doi:10.1093/nar/gkab233
40. Monteys AM, Hundley AA, Ranum PT, Tecedor L, Muehlmatt
A, Lim E, et al. Regulated control of gene therapies by druginduced splicing. Nature. 2021;596(7871):291-295. doi:
10.1038/s41586-021-03770-2
41. Haddad-Mashadrizeh A, Zomorodipour A, Izadpanah M,
Sam MR, Ataei F, Sabouni F, et al. A systematic study of the
function of the human beta-globin introns on the expression of
the human coagulation factor IX in cultured Chinese hamster
ovary cells. J Gene Med. 2009;11(10):941-950. doi: 10.1002/
jgm.1367
42. Hahn S. Structure and mechanism of the RNA polymerase II
transcription machinery. Nat Struct Mol Biol. 2004;11(5):394-
403. doi: 10.1038/nsmb763
43. Manley JL. Nuclear coupling: RNA processing reaches back
to transcription. Nat Struct Biol. 2002;9(11):790-791. doi: 10.
1038/nsb1102-790
44. Kwek KY, Murphy S, Furger A, Thomas B, O’Gorman W,
Kimura H, et al. U1 snRNA associates with TFIIH and regulates
transcriptional initiation. Nat Struct Biol. 2002;9(11):800-805.
doi: 10.1038/nsb862
45. O’Gorman W, Thomas B, Kwek KY, Furger A, Akoulitchev A.
Analysis of U1 small nuclear RNA interaction with cyclin H.
J Biol Chem. 2005;280(44):36920-36925. doi: 10.1074/jbc.m
505791200
46. Tellier M, Maudlin I, Murphy S. Transcription and splicing:
A two-way street. Wiley Interdisciplinary Reviews: RNA.
2020;11(5):e1593. doi: 10.1002/wrna.1593
47. Biswas J, Li W, Singer RH, Coleman RA. Imaging
Organization of RNA Processing within the Nucleus. Cold
Spring Harbor Perspectives in Biology. 2021:a039453. doi:
10.1101/cshperspect.a039453
48. Strasser K, Hurt E. Splicing factor Sub2p is required for
nuclear mRNA export through its interaction with Yra1p.
Nature. 2001;413(6856):648-652. doi: 10.1038/35098113
49. Reed R, Hurt E. A conserved mRNA export machinery coupled
to pre-mRNA splicing. Cell. 2002;108(4):523-531. doi:
10.1016/s0092-8674(02)00627-x
50. Stewart M. Polyadenylation and nuclear export of mRNAs.
J BiologChem. 2019;294(9):2977-2987. doi: 10.1074/jbc.
rev118.005594
51. Schell T, Kulozik AE, Hentze MW. Integration of splicing,
transport and translation to achieve mRNA quality control
by the nonsense-mediated decay pathway. Genome Biol.
2002;3(3):Reviews1006. doi: 10.1186/gb-2002-3-3-reviews
1006
52. Tange TO, Nott A, Moore MJ. The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol.
2004;16(3):279-284. doi: 10.1016/j.ceb.2004.03.012
53. Le Hir H, Seraphin B. EJCs at the heart of translational control.
Cell. 2008;133(2):213-216. doi: 10.1016/j.cell.2008.04.002
54. Kwon OS, Mishra R, Safieddine A, Coleno E, Alasseur Q,
Faucourt M, et al. Exon junction complex dependent mRNA
localization is linked to centrosome organization during
ciliogenesis. Nature communicat. 2021;12(1):1-16. doi: 10.
1038/s41467-021-21590-w
55. Woodward LA, Mabin JW, Gangras P, Singh G. The exon
junction complex: a lifelong guardian of mRNA fate. Wiley
Interdisciplinary Reviews: RNA. 2017;8(3):e1411. doi: 10.1002/
wrna.1411
56. Joseph B, Lai EC. The exon junction complex and intron
removal prevent re-splicing of mRNA. PLoS Gen. 2021;17
(5):e1009563. doi: 10.1371/journal.pgen.1009563
57. Mabin JW, Woodward LA, Patton RD, Yi Z, Jia M, Wysocki VH,
et al. The exon junction complex undergoes a compositional
switch that alters mRNP structure and nonsense-mediated
mRNA decay activity. Cell reports. 2018;25(9):2431-2446. e7.
doi: 10.1016/j.celrep.2018.11.046
58. Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, et al. TAP (NXF1) belongs to a multigene
family of putative RNA export factors with a conserved
modular architecture. Mol Cell Biol. 2000;20(23):8996-9008.
doi: 10.1128/mcb.20.23.8996-9008.2000
59. Clouse KN, Luo MJ, Zhou Z, Reed R. A Ran-independent
pathway for export of spliced mRNA. Nat Cell Biol.
2001;3(1):97-99. doi: 10.1038/35050625
60. Cheng C, Sharp PA. Regulation of CD44 alternative splicing
by SRm160 and its potential role in tumor cell invasion. Mol
Cell Biol. 2006;26(1):362-370. doi: 10.1128/mcb.26.1.362-
370.2006
61. Hachet O, Ephrussi A. Drosophila Y14 shuttles to the posterior
of the oocyte and is required for oskar mRNA transport.
Curr Biol. 2001;11(21):1666-1674. doi: 10.1016/s0960-
9822(01)00508-5
62. Le Hir H, Gatfield D, Izaurralde E, Moore MJ. The exonexon junction complex provides a binding platform for factors
involved in mRNA export and nonsense-mediated mRNA
decay. EMBO J. 2001;20(17):4987-4997. doi: 10.1093/
emboj/20.17.4987
63. Shi H, Xu RM. Crystal structure of the Drosophila Mago
nashi-Y14 complex. Genes Dev. 2003;17(8):971-976. doi:
10.1101/gad.260403
64. Lykke-Andersen J, Shu MD, Steitz JA. Communication
of the position of exon-exon junctions to the mRNA
surveillance machinery by the protein RNPS1. Science.
2001;293(5536):1836-1839. doi: 10.1126/science.1062786
65. Maquat LE. Nonsense-mediated mRNA decay: splicing,
translation and mRNP dynamics. Nat Rev Mol Cell Biol.
2004;5(2):89-99. doi: 10.1038/nrm1310
66. Makarova JA, Kramerov DA. Noncoding RNA of U87 host
gene is associated with ribosomes and is relatively resistant to
nonsense-mediated decay. Gene. 2005;363:51-60. doi: 10.10
16/j.gene.2005.08.010
67. Brogna S, Wen J. Nonsense-mediated mRNA decay (NMD)
mechanisms. Nat Struct Mol Biol. 2009;16(2):107-113. doi:
10.1038/nsmb.1550
68. Ying SY, Lin SL. Intron-derived microRNAs--fine tuning of
gene functions. Gene. 2004;342(1):25-28. doi: 10.1016/j.
gene.2004.07.025
69. Lin SL, Miller JD, Ying SY. Intronic microRNA (miRNA).
J Biomed Biotechnol. 2006;2006(4):26818. doi: 10.1155/
JBB/2006/26818
70. Behl T, Kumar C, Makkar R, Gupta A, Sachdeva M.
Intercalating the role of microRNAs in cancer: as enemy or
protector. Asian Pacific journal of cancer prevention: APJCP.
2020;21(3):593. doi: 10.31557/apjcp.2020.21.3.593
71. Esmailzadeh S, Mansoori B, Mohammadi A, Baradaran B.
Regulatory roles of micro-RNAs in T cell autoimmunity.
Immunological investigations. 2017;46(8):864-879. doi: 10.
1080/08820139.2017.1373901
72. Hashemzadeh MR. Role of micro RNAs in stem cells, cardiac
differentiation and cardiovascular diseases. Gene Reports.
2017;8:11-6. doi: 10.1016/j.genrep.2017.04.012
73. Stark A, Brennecke J, Russell RB, Cohen SM. Identification of
Drosophila MicroRNA targets. PLoS Biol. 2003;1(3):E60. doi:
10.1371/journal.pbio.0000060
74. Pederson T. RNA interference and mRNA silencing, 2004:
how far will they reach? Mol Biol Cell. 2004;15(2):407-410.
doi: 10.1091/mbc.e03-10-0726
75. Tomasello L, Distefano R, Nigita G, Croce CM. The microRNA
family gets wider: the isomiRs classification and role. Frontiers
in Cell and Developmental Biology. 2021;9. doi: 10.3389/
fcell.2021.668648
76. Ambros V. MicroRNA pathways in flies and worms: growth,
death, fat, stress, and timing. Cell. 2003;113(6):673-676. doi:
10.1016/s0092-8674(03)00428-8
77. Islam ABMM, Mohammad E, Khan M. Aberration of the
modulatory functions of intronic microRNA hsa-miR-933
on its host gene ATF2 results in type II diabetes mellitus and
neurodegenerative disease development. Human Genomics.
2020;14(1):1-11. doi: 10.1186/s40246-020-00285-1
78. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, et al. Control of leaf morphogenesis by microRNAs.
Nature. 2003;425(6955):257-263. doi: 10.1038/nature01958
79. Cao X, Fan Q-L. LncRNA MIR503HG promotes high-glucoseinduced proximal tubular cell apoptosis by targeting miR-503-
5p/bcl-2 pathway. Diabetes, Metabolic Syndrome and Obesity:
Targets and Therapy. 2020;13:4507. doi: 10.2147/dmso.s277
869
80. Qu LH, Henras A, Lu YJ, Zhou H, Zhou WX, Zhu YQ, et
al. Seven novel methylation guide small nucleolar RNAs are
processed from a common polycistronic transcript by Rat1p
and RNase III in yeast. Mol Cell Biol. 1999;19(2):1144-1158.
doi: 10.1128/mcb.19.2.1144
81. Bachellerie JP, Cavaille J, Huttenhofer A. The expanding snoRNA world. Biochimie. 2002;84(8):775-790. doi: 10.1016/
s0300-9084(02)01402-5
82. Frazier MN, Pillon MC, Kocaman S, Gordon J, Stanley RE.
Structural overview of macromolecular machines involved in
ribosome biogenesis. Current Opinion in Structural Biology.
2021;67:51-60. doi: 10.1016/j.sbi.2020.09.003
83. Kumar V. Ribosomal biogenesis in eukaryotes. Emerging Concepts in Ribosome Structure, Biogenesis, and Function:
Elsevier; 2021. p. 129-150. doi: 10.1016/b978-0-12-816364-
1.00011-1
84. Bratkovič T, Božič J, Rogelj B. Functional diversity of small
nucleolar RNAs. Nucleic acids research. 2020;48(4):1627-
1651. doi: 10.1093/nar/gkz1140
85. Huttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J,
Lehrach H, Bachellerie JP, et al. RNomics: an experimental
approach that identifies 201 candidates for novel, small, nonmessenger RNAs in mouse. EMBO J. 2001;20(11):2943-2953.
doi: 10.1093/emboj/20.11.2943
86. Reinhart BJ, Bartel DP. Small RNAs correspond to centromere
heterochromatic repeats. Science. 2002;297(5588):1831. doi:
10.1126/science.1077183
87. Tritto P, Specchia V, Fanti L, Berloco M, D’Alessandro R,
Pimpinelli S, et al. Structure, regulation and evolution of the
crystal-Stellate system of Drosophila. Genetica. 2003;117(2-
3):247-257. doi: 10.1023/a:1022960632306
88. Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette
MF, et al. Genetic analysis of RNA-mediated transcriptional
gene silencing. Biochim Biophys Acta. 2004;1677(1-3):129-
141. doi: 10.1016/j.bbaexp.2003.10.015
89. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann
SA, et al. Functional demarcation of active and silent
chromatin domains in human HOX loci by noncoding RNAs.
Cell. 2007;129(7):1311-1323. doi: 10.1016/j.cell.2007.05.022
90. Polavarapu N, Marino-Ramirez L, Landsman D, McDonald
JF, Jordan IK. Evolutionary rates and patterns for human
transcription factor binding sites derived from repetitive DNA. BMC Genomics. 2008;9:226. doi: 10.1186/1471-2164-9-226
91. Parris GE. Developmental diseases and the hypothetical Master
Development Program. Med Hypotheses. 2010;74(3):564-573.
doi: 10.1016/j.mehy.2009.09.035
92. Qian W, Zhang J. Codon usage bias and nuclear mRNA
concentration: Correlation vs. causation. Proceedings of the
National Academy of Sciences. 2021;118(20). doi: 10.1073/
pnas 2104714118
93. Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss
T. Cajal body-specific small nuclear RNAs: a novel class of
2’-O-methylation and pseudouridylation guide RNAs. EMBO
J. 2002;21(11):2746-2756. doi: 10.1093/emboj/21.11.2746
94. Nishihara H, Smit AF, Okada N. Functional noncoding
sequences derived from SINEs in the mammalian genome.
Genome Res. 2006;16(7):864-874. doi: 10.1101/gr.5255506
95. Huppert JL. Hunting G-quadruplexes. Biochimie. 2008;90(8):
1140-1148. doi: 10.1016/j.biochi.2008.01.014
96. Vagner S, Vagner C, Mattaj IW. The carboxyl terminus of
vertebrate poly(A) polymerase interacts with U2AF 65 to
couple 3’-end processing and splicing. Genes Dev. 2000;14
(4):403-413. doi: 10.1101/gad.14.4.403
97. Fong YW, Zhou Q. Stimulatory effect of splicing factors on
transcriptional elongation. Nature. 2001;414(6866):929-933.
doi: 10.1038/414929a
98. Polak P, Domany E. Alu elements contain many binding sites
for transcription factors and may play a role in regulation of
developmental processes. BMC Genomics. 2006;7:133. doi:
10.1186/1471-2164-7-133
99. Tahiliani J, Leisk J, Aradhya K, Ouyang K, Aradhya S, Nykamp
K. Utility of RNA Sequencing Analysis in the Context of
Genetic Testing. Current Genetic Medicine Reports. 2020:1-7.
doi: 10.1007/s40142-020-00195-7
100. Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N.
Intracellular transcription of G-rich DNAs induces formation
of G-loops, novel structures containing G4 DNA. Genes Dev.
2004;18(13):1618-1629. doi: 10.1101/gad.1200804
101. Duquette ML, Pham P, Goodman MF, Maizels N. AID binds to
transcription-induced structures in c-MYC that map to regions
associated with translocation and hypermutation. Oncogene.
2005;24(38):5791-5798. doi: 10.1038/sj.onc.1208746
102. Duquette ML, Huber MD, Maizels N. G-rich proto-oncogenes
are targeted for genomic instability in B-cell lymphomas.
Cancer Res. 2007;67(6):2586-2594. doi: 10.1158/0008-5472.
can-06-2419
103. Larson ED, Duquette ML, Cummings WJ, Streiff RJ, Maizels N.
MutSalpha binds to and promotes synapsis of transcriptionally
activated immunoglobulin switch regions. Curr Biol. 2005;
15(5):470-474. doi: 10.1016/j.cub.2004.12.077
104. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S.
Quadruplex DNA: sequence, topology and structure. Nucleic
Acids Res. 2006;34(19):5402-5415. doi: 10.1093/nar/gkl655
105. Maizels N. Dynamic roles for G4 DNA in the biology of
eukaryotic cells. Nat Struct Mol Biol. 2006;13(12):1055-1059.
doi: 10.1038/nsmb1171
106. Phan AT, Kuryavyi V, Patel DJ. DNA architecture: from G to
Z. Curr Opin Struct Biol. 2006;16(3):288-298. doi: 10.1016/j.
sbi.2006.05.011
107. Yang H, Zhou Y, Liu J. G-quadruplex DNA for construction
of biosensors. TrAC Trends in Analytical Chemistry. 2020:
116060. doi: 10.1016/j.trac.2020.116060
108. Huppert JL, Balasubramanian S. Prevalence of quadruplexes
in the human genome. Nucleic Acids Res. 2005;33(9):2908-
2916. doi: 10.1093/nar/gki609
109. Todd AK, Johnston M, Neidle S. Highly prevalent putative
quadruplex sequence motifs in human DNA. Nucleic Acids
Res. 2005;33(9):2901-7. doi: 10.1093/nar/gki553
110. Du Z, Kong P, Gao Y, Li N. Enrichment of G4 DNA motif in
transcriptional regulatory region of chicken genome. Biochem
Biophys Res Commun. 2007;354(4):1067-1070. doi: 10.1016/j.
bbrc.2007.06.032
111. Huppert JL, Balasubramanian S. G-quadruplexes in promoters
throughout the human genome. Nucleic Acids Res. 2007;35(2):
406-413. doi: 10.1093/nar/gkl1057
112. Zhao Y, Du Z, Li N. Extensive selection for the enrichment of
G4 DNA motifs in transcriptional regulatory regions of warm
blooded animals. FEBS Lett. 2007;581(10):1951-1956. doi:
10.1016/j.febslet.2007.04.017
113. Menon S, Piramanayakam S, Agarwal G. Computational identification of promoter regions in prokaryotes and Eukaryotes.
EPRA International Journal of Agriculture and Rural Economic
Research (ARER). 2021;9(7):21-28. doi: 10. 36713/epra7667
114. Haddad-Mashadrizeh A, Hemmat J, Aslamkhan M. Intronic
regions of the human coagulation factor VIII gene harboring
transcription factor binding sites with a strong bias towards the
short-interspersed elements. Heliyon. 2020;6(9):e04727. doi:
10.1016/j.heliyon.2020.e04727
115. Gehring NH, Roignant J-Y. Anything but ordinary–emerging
splicing mechanisms in eukaryotic gene regulation. Trends in
Genetics. 2020. doi: 10.1016/j.tig.2020.10.008
116. Petibon C, Malik Ghulam M, Catala M, Abou Elela S.
Regulation of ribosomal protein genes: An ordered anarchy.
Wiley Interdisciplinary Reviews RNA. 2021;12(3):e1632. doi:
10.1002/wrna.1632
117. Lopez AJ. Alternative splicing of pre-mRNA: developmental
consequences and mechanisms of regulation. Annu Rev Genet.
1998;32:279-305. doi: 10.1146/annurev.genet.32.1.279
118. Modrek B, Lee C. A genomic view of alternative splicing. Nat
Genet. 2002;30(1):13-19. doi: 10.1038/ng0102-13
119. Bruno IG, Jin W, Cote GJ. Correction of aberrant FGFR1
alternative RNA splicing through targeting of intronic
regulatory elements. Hum Mol Genet. 2004;13(20):2409-2420.
doi: 10.1093/hmg/ddh272
120. Ladomery MR, Harper SJ, Bates DO. Alternative splicing
in angiogenesis: the vascular endothelial growth factor
paradigm. Cancer Lett. 2007;249(2):133-142. doi: 10.1016/j.
canlet.2006.08.015
121. Lamaa A, Humbert J, Aguirrebengoa M, Cheng X, Nicolas
E, Côté J, et al. Integrated analysis of H2A. Z isoforms
function reveals a complex interplay in gene regulation. Elife.
2020;9:e53375. doi: 10.7554/elife.53375
122. Sun H, Chasin LA. Multiple splicing defects in an intronic
false exon. Mol Cell Biol. 2000;20(17):6414-6425. doi:
10.1128/.20.17.6414-6425.2000
123. Vela E, Roca X, Isamat M. Identification of novel splice variants
of the human CD44 gene. Biochem Biophys Res Commun.
2006;343(1):167-170. doi: 10.1016/j.bbrc.2009.06.049
124. Di Segni G, Gastaldi S, Tocchini-Valentini GP. Cis- and transsplicing of mRNAs mediated by tRNA sequences in eukaryotic
cells. Proc Natl Acad Sci U S A. 2008;105(19):6864-6869. doi:
10.1073/pnas.0800420105
125. Viles KD, Sullenger BA. Proximity-dependent and proximityindependent trans-splicing in mammalian cells. RNA. 2008;(6):1081-1094. doi: 10.1261/rna.384808
126. Hasler J, Strub K. Alu elements as regulators of gene
expression. Nucleic Acids Res. 2006;34(19):5491-5497. doi:
10.1093/nar/gkl706
127. Bhadra M, Howell P, Dutta S, Heintz C, Mair WB. Alternative splicing in aging and longevity. Human genetics. 2020;139
(3):357-369. doi: 10.1007/s00439-019-02094-6
128. Sorek R, Ast G, Graur D. Alu-containing exons are alternatively
spliced. Genome Res. 2002;12(7):1060-1067. doi: 10.1101/gr.
229302
129. Pérez-Molina R, Arzate-Mejía RG, Ayala-Ortega E, Guerrero
G, Meier K, Suaste-Olmos F, et al. An intronic Alu element
attenuates the transcription of a long non-coding RNA in
human cell lines. Frontiers In Genetics. 2020;11:928. doi: 10.
3389/fgene.2020.00928
130. Lozano G, Francisco-Velilla R, Martinez-Salas E. Deconstructing internal ribosome entry site elements: an update of
structural motifs and functional divergences. Royal Society
Open Biology. 2018;8(11):180155. doi: 10.1098/rsob.180155
131. Babich V, Aksenov N, Alexeenko V, Oei SL, Buchlow G,
Tomilin N. Association of some potential hormone response
elements in human genes with the Alu family repeats. Gene.
1999;239(2):341-349. doi: 10.1016/s0378-1119(99)00391-1
132. Li W, Kuzoff R, Wong CK, Tucker A, Lynch M. Characterization
of newly gained introns in Daphnia populations. Genome
biology and evolution. 2014;6(9):2218-2234. doi: 10.1093/
gbe/evu174
133. Makalowski W. Genomic scrap yard: how genomes utilize all
that junk. Gene. 2000;259(1-2):61-67. doi: 10.1016/s0378-
1119(00)00436-4
134. Nekrutenko A, Li WH. Transposable elements are found in a
large number of human protein-coding genes. Trends Genet.
2001;17(11):619-621. doi: 10.1016/s0168-9525(01)02445-3
135. Corley M, Flynn RA, Lee B, Blue SM, Chang HY, Yeo GW.
Footprinting SHAPE-eCLIP Reveals Transcriptome-wide
Hydrogen Bonds at RNA-Protein Interfaces. Molecular Cell.
2020;80(5):903-914. e8. doi: 10.1016/j.molcel.2020.11.014
136. Jo B-S, Choi SS. Introns: the functional benefits of introns
in genomes. Genomics & informatics. 2015;13(4):112. doi:
10.5808/gi.2015.13.4.112
137. Baralle FE, Giudice J. Alternative splicing as a regulator of
development and tissue identity. Nature Rev Molr cell biolog.
2017;18(7):437-451. doi: 10.1038/nrm.2017.27
138. Chang YF, Imam JS, Wilkinson MF. The nonsensemediated decay RNA surveillance pathway. Annu Rev
Biochem. 2007;76:51-74. doi: 10.1146/annurev.biochem.76.
050106.093909
139. Hagiwara M. Alternative splicing: a new drug target of the
post-genome era. Biochim Biophys Acta. 2005;1754(1-2):324-
331. doi: 10.1016/j.bbapap.2005.09.010
140. Wei C, Xie W, Huang X, Mo X, Liu Z, Wu G, et al. Profiles
of alternative splicing events in the diagnosis and prognosis
of Gastric Cancer. J Cancer. 2021;12(10):2982. doi: 10.7150/
jca.46239
141. Eblen ST. Extracellular-regulated kinases: signaling from Ras
to ERK substrates to control biological outcomes. Adv Cancer
Res. 2018;138:99-142. doi: 10.1016/bs.acr.2018.02.004
142. Hujová P, Souček P, Grodecká L, Grombiříková H, Ravčuková
B, Kuklínek P, et al. Deep intronic mutation in SERPING1
caused hereditary angioedema through pseudoexon activation.
Journal of clinical immunology. 2020;40(3):435-46. doi:
10.1007/s10875-020-00753-2
143. Venables JP. Aberrant and alternative splicing in cancer.
Cancer Res. 2004;64(21):7647-5764. doi: 10.1158/0008-5472.
can-04-1910
144. Venables JP. Unbalanced alternative splicing and its
significance in cancer. Bioessays. 2006;28(4):378-386. doi:
10.1002/bies.20390
145. Rhine CL, Cygan KJ, Soemedi R, Maguire S, Murray MF,
Monaghan SF, et al. Hereditary cancer genes are highly susceptible
to splicing mutations. PLoS Gen. 2018;14(3):e1007231. doi:
10.1371/journal.pgen.1007231
146. Kashkan I, Timofeyenko K, Kollárová E, Růžička K. In Vivo
Reporters for Visualizing Alternative Splicing of Hormonal
Genes. Plants. 2020;9(7):868. doi: 10.3390/plants9070868
147. Biamonti G, Infantino L, Gaglio D, Amato A. An intricate
connection between alternative splicing and phenotypic
plasticity in development and cancer. Cells. 2020;9(1):34. doi:
10.3390/cells9010034
148. Sneath RJ, Mangham DC. The normal structure and function
of CD44 and its role in neoplasia. Mol Pathol. 1998;51(4):191-
200. doi: 10.1136/mp.51.4.191
149. Chalfant CE, Rathman K, Pinkerman RL, Wood RE, Obeid LM,
Ogretmen B, et al. De novo ceramide regulates the alternative
splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma
cells. Dependence on protein phosphatase-1. J Biol Chem.
2002;277(15):12587-12595. doi: 10.1074/jbc.m112010200
150. Makhafola TJ, Mbele M, Yacqub-Usman K, Hendren A, Haigh
DB, Blackley Z, et al. Apoptosis in cancer cells is induced by
alternative splicing of hnRNPA2/B1 through splicing of Bcl-x,
a mechanism that can be stimulated by an extract of the South
African Medicinal Plant, Cotyledon orbiculata. Frontiers in
Oncology. 2020;10. doi: 10.3389/fonc.2020.547392
151. Blake D, Lynch KW. The three as: Alternative splicing,
alternative polyadenylation and their impact on apoptosis in
immune function. Immunol Rev. 2021. doi: 10.1111/imr.13018
152. López-Martínez A, Soblechero-Martín P, de-la-Puente-Ovejero
L, Nogales-Gadea G, Arechavala-Gomeza V. An overview of
alternative splicing defects implicated in myotonic dystrophy
type i. Genes. 2020;11(9):1109. doi: 10.3390/genes11091109
153. Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B.
Htra2-beta 1 stimulates an exonic splicing enhancer and can
restore full-length SMN expression to survival motor neuron 2
(SMN2). Proc Natl Acad Sci U S A. 2000;97(17):9618-9623.
doi: 10.1073/pnas.160181697
154. Nissim-Rafinia M, Chiba-Falek O, Sharon G, Boss A, Kerem
B. Cellular and viral splicing factors can modify the splicing
pattern of CFTR transcripts carrying splicing mutations. Hum
Mol Genet. 2000;9(12):1771-1778. doi: 10.1093/hmg/9.12.
1771
155. Helman G, Takanohashi A, Hagemann TL, Perng MD, Walkiewicz
M, Woidill S, et al. Type II Alexander disease caused by splicing
errors and aberrant overexpression of an uncharacterized GFAP
isoform. Human mutation. 2020;41(6):1131-1137. doi: 10.1002/
humu.24008
156. Sazani P, Kole R. Modulation of alternative splicing by antisense
oligonucleotides. Prog Mol Subcell Biol. 2003;31:217-239.
doi: 10.1007/978-3-662-09728-1_8
157. Celotto AM, Lee JW, Graveley BR. Exon-specific RNA
interference: a tool to determine the functional relevance of
proteins encoded by alternatively spliced mRNAs. Methods
Mol Biol. 2005;309:273-282. doi: 10.1385/1-59259-935-4:273158. Scharner J, Ma WK, Zhang Q, Lin K-T, Rigo F, Bennett CF,
et al. Hybridization-mediated off-target effects of spliceswitching antisense oligonucleotides. Nucleic Acids Res.
2020;48(2):802-816. doi: 10.1093/nar/gkz1132
159. Halloy F, Iyer PS, Ćwiek P, Ghidini A, Barman-Aksözen J,
Wildner-Verhey van Wijk N, et al. Delivery of oligonucleotides
to bone marrow to modulate ferrochelatase splicing in a mouse
model of erythropoietic protoporphyria. Nucleic Acids Res.
2020;48(9):4658-71. doi: 10.1093/nar/gkaa229
160. Pilch B, Allemand E, Facompre M, Bailly C, Riou JF, Soret J,
et al. Specific inhibition of serine- and arginine-rich splicing
factors phosphorylation, spliceosome assembly, and splicing
by the antitumor drug NB-506. Cancer Res. 2001;61(18):6876-
6884.
161. Chen Y, Huang M, Liu X, Huang Y, Liu C, Zhu J, et al.
Alternative splicing of mRNA in colorectal cancer: new
strategies for tumor diagnosis and treatment. Cell Death &
Disease. 2021;12(8):1-16. doi: 10.1038/s41419-021-04031-w
162. Varani L, Spillantini MG, Goedert M, Varani G. Structural
basis for recognition of the RNA major groove in the tau exon
10 splicing regulatory element by aminoglycoside antibiotics.
Nucleic Acids Res. 2000;28(3):710-719. doi: 10.2210/pdb1ei2/
pdb
163. Liu X, Jiang Q, Mansfield SG, Puttaraju M, Zhang Y, Zhou
W, et al. Partial correction of endogenous DeltaF508 CFTR
in human cystic fibrosis airway epithelia by spliceosomemediated RNA trans-splicing. Nat Biotechnol. 2002;20(1):47-
52. doi: 10.1038/nbt0102-47
164. Lu S, Cullen BR. Analysis of the stimulatory effect of splicing
on mRNA production and utilization in mammalian cells.
RNA. 2003;9(5):618-630. doi: 10.1261/rna.5260303
165. Sam MR, Zomorodipour A, Shokrgozar MA, Ataei F,
Haddad-Mashadrizeh A, Amanzadeh A. Enhancement of the
human factor IX expression, mediated by an intron derived
fragment from the rat aldolase B gene in cultured hepatoma
cells. Biotechnol Lett. 2010;32(10):1385-1392. doi: 10.1007/
s10529-010-0321-x
166. Appledorn DM, Patial S, McBride A, Godbehere S, Van
Rooijen N, Parameswaran N, et al. Adenovirus vector-induced
innate inflammatory mediators, MAPK signaling, as well as
adaptive immune responses are dependent upon both TLR2
and TLR9 in vivo. J Immunol. 2008;181(3):2134-2144. doi:
10.4049/jimmunol.181.3.2134
167. Tang R, Xu Z. Gene therapy: A double-edged sword with great
powers. Mol Cell Biochem. 2020;474(1):73-81. doi: 10.1007/
s11010-020-03834-3
168. Jiao Y, Xia ZL, Ze LJ, Jing H, Xin B, Fu S. Research Progress
of nucleic acid delivery vectors for gene therapy. Biomedical
microdevices. 2020;22(1):1-10. doi: 10.1007/s10544-020-0469-7
169. Schuppe HC, Meinhardt A. Immune privilege and inflammation
of the testis. Chem Immunol Allergy. 2005;88:1-14. doi: 10.
1159/000087816
170. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and
biomaterial scaffolds for constructing tissues and cell delivery.
2008. doi: 10.3824/stembook.1.1.1
171. Haoudi A, Semmes OJ, Mason JM, Cannon RE. Retrotransposition-Competent Human LINE-1 Induces Apoptosis in
Cancer Cells With Intact p53. J Biomed Biotechnol. 2004;
2004(4):185-194. doi: 10.1155/s1110724304403131
172. Yang Y, Walsh CE. Spliceosome-mediated RNA transsplicing. Mol Ther. 2005;12(6):1006-1012. doi: 10.1016/j.ymthe.
2005.09.006
173. Chao H, Walsh CE. RNA repair for haemophilia A. Expert Rev
Mol Med. 2006;8(1):1-8. doi: 10.1017/S1462399406010337
174. Wood M, Yin H, McClorey G. Modulating the expression
of disease genes with RNA-based therapy. PLoS Genet.
2007;3(6):e109. doi: 10.1371/journal.pgen.0030109
175. Wang J, Mansfield SG, Cote CA, Jiang PD, Weng K, Amar MJ,
et al. Trans-splicing into highly abundant albumin transcripts
for production of therapeutic proteins in vivo. Mol Ther.
2009;17(2):343-351. doi: 10.1038/mt.2008.260
176. To TK, Nishizawa Y, Inagaki S, Tarutani Y, Tominaga S, Toyoda
A, et al. RNA interference-independent reprogramming of DNA
methylation in Arabidopsis. Nature Plants. 2020;6(12):1455-
1467. doi: 10.1038/s41477-020-00810-z
177. Hong EM, Ingemarsdotter CK, Lever AM. Therapeutic
applications of trans-splicing. British Medical Bulletin.
2020;136(1):4-20. doi: 10.1093/bmb/ldaa028
178. Riedmayr LM. SMaRT for therapeutic purposes. Chimeric
RNA: Springer; 2020. p. 219-232. doi: 10.1007/978-1-4939-
9904-0_17
179. Luo M-J, Zhou Z, Magni K, Christoforides C, Rappsilber J,
Mann M, et al. Pre-mRNA splicing and mRNA export linked
by direct interactions between UAP56 and Aly. Nature.
2001;413(6856):644-647. doi: 10.1038/35098106
180. Anderson CM, Kohorn BD. Inactivation of Arabidopsis SIP1
leads to reduced levels of sugars and drought tolerance. J
Plant Physiolog. 2001;158(9):1215-1219. doi: 10.1078/s0176-
1617(04)70149-2
181. Besse F, Ephrussi A. Translational control of localized
mRNAs: restricting protein synthesis in space and time. Nat
Rev Mol Cell Biol. 2008;9(12):971-980. doi: 10.1038/nrm2548
182. Gustafsson C, Reid R, Greene PJ, Santi DV. Identification
of new RNA modifying enzymes by iterative genome search
using known modifying enzymes as probes. Nucleic Acids Res.
1996;24(19):3756-3762. doi: 10.1093/nar/24.19.3756
183. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker
AK. Intrinsic disorder in transcription factors. Biochemistry.
2006;45(22):6873-6888. doi: 10.1021/bi0602718
184. Cooke C, Hans H, Alwine JC. Utilization of splicing elements
and polyadenylation signal elements in the coupling of
polyadenylation and last-intron removal. Mol Cell Biol.
1999;19(7):4971-4979. doi: 10.1128/mcb.19.7.4971