A Comprehensive Review of the Key Characteristics of the Genus Mentha, Natural Compounds and Biotechnological Approaches for the Production of Secondary Metabolites

Document Type : Review Paper

Authors

Department of Plant Bioproducts, National Institude of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

Abstract

Context: The genus Mentha is one of the most aromatic and well-known members of the Lamiaceae family. A wide range 
of bioactive compounds has been reported in mints. Regarding the high economic importance of Mentha plants due to 
the presence of valuable metabolites, the demand for their products is growing exponentially. Therefore, to supply such 
demand, new strategies should be adopted to improve the yield and medicinal quality of the products.
Evidence Acquisition: The current review is written based on scientific literature obtained from online databases, 
including Google Scholar, PubMed, Scopus, and Web of Science regarding the characteristic features of some species of 
the genus Mentha, their distribution and cultivation, main uses and benefits, phytochemical composition, biotechnological 
approaches for the production of secondary metabolites, and strategies for enhanced production of mints secondary 
metabolites.
Results: In this article, we offer an overview of the key characteristics, natural compounds, biological properties, and 
medicinal uses of the genus Mentha. Current research describes biotechnological techniques such as in vitro culture methods 
for the production of high-value secondary metabolites. This review also highlights the strategies such as elicitation, 
genetic, and metabolic engineering to improve the secondary compounds production level in mint plants. Overall, it can be 
concluded that identifying the biosynthetic pathways, leading to the accumulation of pharmaceutically important bioactive 
compounds, has paved the way for developing highly productive mint plants with improved phytochemical profiles.

Keywords

Main Subjects


1. Elzebroek ATG, Wind K. Guide to Cultivated Plants. 
Cambridge. CABI; 2008.
2. Vining KJ, Hummer KE, Bassil NV, Lange BM, Khoury CK, 
Carver D. Crop wild relatives as germplasm resource for 
cultivar improvement in mint (Mentha L.). Front Plant Sci. 
2020;11:1217. doi: 0.3389/fpls.2020.01217
3. Anwar F, Abbas A, Mehmood T, Gilani AH, Rehman Nu. 
Mentha: A genus rich in vital nutra-pharmaceuticals:A review. 
Phytother Res. 2019;33(10):2548-2570. doi: 10.1002/ptr.6423
4. Liu J, Feng W, Peng C. A song of ice and fire: cold and hot 
properties of traditional Chinese medicines. Front Pharmacol. 
2021;11:598744. doi: 10.3389/fphar.2020.598744
5. Wang J, Lan Y, Li H, Zhang Y, Zhang Q, Cao Y, et al. 
Percutaneous penetration enhancement effect of essential oil of 
mint (Mentha haplocalyx Briq.) on Chinese herbal components 
with different lipophilicity. J Tradit Chin Med. 2014;1(2):109-
19. doi: 10.1016/j.jtcms.2014.09.003
6. Alu’datt MH, Rababah T, Alhamad MN, Gammoh S, AlMahasneh MA, Tranchant CC, et al. Pharmaceutical, 
nutraceutical and therapeutic properties of selected wild 
medicinal plants: Thyme, spearmint, and rosemary. Elsevier; 
2018. p. 275-90. doi:10.1016/B978-0-12-814625-5.00014-5
7. CHIȘ M-S, MUSTE S, PĂUCEAN A, MAN S, POP A, POP 
CR, et al. A comprehensive review of medicinal and therapeutic 
uses of Mentha piperita. 2019;27:38-49
8. Moetamedipoor SA, Saharkhiz MJ, Khosravi AR, Jowkar A. 
Essential oil chemical diversity of Iranian mints. Ind Crops 
Prod. 2021;172:114039. doi: 10.1016/j.indcrop.2021.114039
9. Brahmi F, Khodir M, Mohamed C, Pierre D. Chemical 
composition and biological activities of Mentha species. 
IntechOpen; 2017. p. 47-79. doi: 10.5772/67291
10. Li B, Cantino PD, Olmstead RG, Bramley GL, Xiang C-L, 
Ma Z-H, et al. A large-scale chloroplast phylogeny of theLamiaceae sheds new light on its subfamilial classification. Sci 
Rep. 2016;6(1):1-18. doi: 10.1038/srep34343
11. Jedrzejczyk I, Rewers M. Genome size and ISSR markers 
for Mentha L.(Lamiaceae) genetic diversity assessment and 
species identification. Ind Crops Prod. 2018;120:171-9. doi: 
10.1016/j.indcrop.2018.04.062
12. Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak 
H, Kręgiel D, et al. Plants of genus Mentha: From farm to food 
factory. Plants. 2018;7(3):70. doi: 10.3390/plants7030070
13. Hanafy DM, Prenzler PD, Hill RA, Burrows GE. Leaf 
micromorphology of 19 Mentha taxa. Aust J Bot. 2019;67 
(7):463-72. doi: 10.1071/BT19054
14. Kapp K. Polyphenolic and essential oil composition of Mentha 
and their antimicrobial effect. University of Helsinki; 2015.
15. Shabih S, Hajdari A, Mustafa B, Quave CL. Medicinal plants 
in the Balkans with antimicrobial properties. Medicinal Plants 
as Anti-Infectives. 2022:103-38. doi: 10.1016/B978-0-323-
90999-0.00013-6.
16. Daneshbakhsh D, Asgarpanah J, Najafizadeh P, Rastegar 
T, Mousavi Z. Safety assessment of Mentha mozaffarianii
essential oil: acute and repeated toxicity studies. Iran J of Med 
Sci. 2018;43(5):479
17. Tavakkoli-Khaledi S, Asgarpanah J. Essential oil chemical 
composition of Mentha mozaffarianii jamzad seeds. J Mex 
Chem Soc. 2016;60(1):19-22. doi: 10.29356/jmcs.v60i1.66
18. Jamzad Z. A survey of Lamiaceae in the flora of Iran. Rostaniha. 
2013;14(1):59-67. doi: 10.22092/botany.2013.101317
19. Ahmad RS, Imran A, Arshad MS, Hussain MB, Waheed M, 
Safdar S, et al. Introductory Chapter: Mentha piperita (a 
Valuable Herb): Brief Overview. In: Akram M, Ahmad RS, 
editors. Herbs and Spices. London: IntechOpen; 2020. p. 1. 
doi: 10.5772/intechopen.93627
20. Peter KV. Handbook of herbs and spices Braz. J. Pharm. Sci. 
2010; 46 (4). doi: 10.1590/S1984-82502010000400030
21. Roshanibakhsh F, Samsampour D, Askari Seyahooei M, 
Bagheri A. Strong relationship between molecular and 
morphological attributes in Iranian mentha populations 
(Mentha mozaffarianii Jamzad). Genet Resour Crop Evol. 
2023:1-25. doi: 10.1007/s10722-022-01532-1.
22. Yousefian S, Lohrasebi T, Farhadpour M, Haghbeen K. Effect 
of methyl jasmonate on phenolic acids accumulation and 
the expression profile of their biosynthesis-related genes in 
Mentha spicata hairy root cultures. PCTOC. 2020;142(2):285-
97. doi: 10.1007/s11240-020-01856-9
23. Yousefian S, Lohrasebi T, Farhadpour M, Haghbeen K. 
Production of phenolic acids in hairy root cultures of medicinal 
plant Mentha spicata L. in response to elicitors. MBRC. 
2020;9(1):23. doi: 10.22099/mbrc.2020.36031.1475
24. Soltanbeigi A, Özgüven M, Hassanpouraghdam MB. Plantingdate and cutting-time affect the growth and essential oil 
composition of Mentha× piperita and Mentha arvensis. 
Ind Crops Prod. 2021;170:113790. doi: 10.1016/j.indcrop. 
2021.113790
25. Bhattacharya S. Cultivation of essential oils. In: Preedy V, 
editor. Essential oils in food preservation, flavor and safety. 
Academic Press; 2016. p. 19-29. doi: 10.1016/B978-0-12-
416641-7.00003-1
26. Devi A, Sharma G. Morphological, phenological and 
cytological comparison of Mentha longifolia and M. spicata
from sub-tropical and temperate regions of Jammu province 
(J&K). Vegetos. 2022;35(1):179-87. doi: 10.1007/s42535-021-
00278-y. 
27. Brahmi F, Lounis N, Mebarakou S, Guendouze N, YalaouiGuellal D, Madani K, et al. Impact of growth sites on the 
phenolic contents and antioxidant activities of three algerian 
mentha species (M. pulegium L., M. rotundifolia (L.) Huds., 
and M. spicata L.). Front Pharmacol. 2022; 13: 886337. doi: 
10.3389/fphar.2022.886337.
28. Heydari M, Zanfardino A, Taleei A, Shahnejat Bushehri AA, 
Hadian J, Maresca V, et al. Effect of heat stress on yield, 
monoterpene content and antibacterial activity of essential 
oils of Mentha x piperita var. Mitcham and Mentha arvensis 
var. piperascens. Molecules. 2018;23(8):1903. doi: 10.3390/
molecules23081903. 
29. Mollaei S, Ebadi M, Hazrati S, Habibi B, Gholami F, Sourestani 
MM. Essential oil variation and antioxidant capacity of 
Mentha pulegium populations and their relation to ecological 
factors. Biochem Syst Ecol. 2020;91:104084. doi: 10.1016/j.
bse.2020.104084
30. Thuraisingham V, SERAN T. Response of rooting atributes 
of peppermint (Mentha piperita L.) stem cuttings to natural 
rooting stimulators. IJCST. 2019;5(1):20-7
31. Fontana E, Nicola S, Hoeberechts J. Rooting products 
and cutting timing for peppermint (Mentha× piperita L.) 
radication. Acta Hortic. 2006:297-302. doi: 10.17660/
ActaHortic.2006.723.41
32. Thawkar BS. Phytochemical and pharmacological review of 
Mentha arvensis. IJGP. 2016;10(2)
33. Bohloul A, Sayed AV, Hossein AF, Hossein HD. Studying of 
essential oil variations in leaves of Mentha species. AJPS. 
2009;3(10):217-21. doi: 10.5897/AJPS.9000242
34. Božović M, Pirolli A, Ragno R. Mentha suaveolens Ehrh.
(Lamiaceae) essential oil and its main constituent piperitenone 
oxide: Biological activities and chemistry. Molecules. 
2015;20(5):8605-33. doi: 10.3390/molecules20058605
35. Azizian D. Anatomical studies of Mentha mozaffarianii
(Labiatae) and a related species. The Iranian Journal of 
Botany. 2015;7(1):63-72.http://doi.org/20.1001.1.1029788.13
94.7.1.10.2.
36. Kumar D, Kumar R, Singh AK, Verma K, Singh KP, Kumar 
A, et al. A novel and economically viable agro-technique for 
enhancing productivity and resource use efficiency in menthol 
mint (Mentha arvensis L.). Ind Crops Prod. 2021;162:113233.
doi: 10.1016/j.indcrop.2020.113233
37. Yeşil M. The effect of different planting times on yield and 
quality features in some mint species (Mentha longifolia, 
Mentha x piperita, Mentha spicata). EJFA. 2021:671-81. doi: 
10.9755/ejfa.2021.v33.i8.2743
38. Gomes HT, Bartos PMC, Martins AE, Oliveira SOD, 
Scherwinski-Pereira JE. Assessment of mint (Mentha 
spp.) species for large-scale production of plantlets by 
micropropagation. Acta Sci Biol Sci. 2015;37(4):405-10. doi: 
10.4025/actascibiolsci.v37i4.26984
39. Łyczko J, Piotrowski K, Kolasa K, Galek R, Szumny A. 
Mentha piperita L. micropropagation and the potential 
influence of plant growth regulators on volatile organic 
compound composition. Molecules. 2020;25(11):2652. doi: 
10.3390/molecules25112652
40. Knaus U, Zimmermann J, Appelbaum S, Palm HW. Spearmint 
(Mentha spicata) cultivation in decoupled aquaponics with 
three hydro-components (grow pipes, raft, gravel) and African 
catfish (Clarias gariepinus) production in northern Germany. Sustainability. 2022;14(1):305. doi: 10.3390/su14010305
41. Surendran U, Chandran C, Joseph E. Hydroponic cultivation 
of Mentha spicata and comparison of biochemical and 
antioxidant activities with soil-grown plants. Acta Physiol 
Plant. 2017;39(1):1-14. doi: 10.1007/s11738-016-2320-6
42. Garlet TMB, Paulus D, Flores R, Garlet TMB. Production 
and chemical composition of Mentha x piperita var. citrata 
(Ehrh.) Briq. essential oil regarding to different potassium 
concentrations in the hydroponic solution. J Biotechnol 
Biodivers. 2013;4(3):200-6. doi: 10.20873/jbb.uft.cemaf.v4n3.
garlet
43. Behera M, Mahapatra P, Singandhupe R, Kundu D, Kannan K, 
Mandal K, et al. Effect of drip fertigation on yield, water use 
efficiency and water productivity of mint (Mentha arvensis L.). 
J Agric Phys. 2014;14(1):37-43
44. Sommano SR, Kanthawang N, Janpen C, Wongkaew M, 
Inkham C, Van Doan H, et al. Physiological and Oxidative 
Responses of Japanese Mint Grown Under Limited Water and 
Nitrogen Supplies in an Evaporated Greenhouse System. Front 
Sustain Food Syst 2022;5:533. doi: 10.3389/fsufs.2021.808327
45. O. Elansary H, Mahmoud EA, El-Ansary DO, Mattar MA. 
Effects of water stress and modern biostimulants on growth 
and quality characteristics of mint. Agronomy. 2019;10(1):6.
doi: 10.3390/agronomy10010006
46. Chiappero J, del Rosario Cappellari L, Alderete LGS, Palermo 
TB, Banchio E. Plant growth promoting rhizobacteria improve 
the antioxidant status in Mentha piperita grown under drought 
stress leading to an enhancement of plant growth and total 
phenolic content. Ind Crops Prod. 2019;139:111553. doi: 
10.1016/j.indcrop.2019.111553. 
47. Rahimi Y, Taleei A, Ranjbar M. Long-term water deficit 
modulates antioxidant capacity of peppermint (Mentha 
piperita L.). Sci Hortic. 2018;237:36-43. doi: 10.1016/j.
scienta.2018.04.004.
48. Pandey R, Singh A, Trivedi S, Suchi S, Smita TP, Shukla A, 
et al. Diseases of mints and their management. Today and 
Tomorrow’s Printers and Publishers; 2019; 273-303.
49. Kalra A, Singh H, Pandey R, Samad A, Patra N, Kumar S. 
Diseases in mint: causal organisms, distribution, and control 
measures. J Herbs Spices Med Plants 2005;11(1-2):71-91. doi: 
10.1300/J044v11n01_03
50. Tzanetakis IE, Postman JD, Samad A, Martin RR. Mint 
viruses: Beauty, stealth, and disease. Plant Dis. 2010;94(1):4-
12. doi: 10.1094/PDIS-94-1-0004
51. Nega A. Review on concepts in biological control of plant 
pathogens. Journal of Biology, Agriculture and Healthcare. 
2014;4(27):33-54
52. Aflatuni A, Sari EK JU, Hohtola A. Optimum harvesting time 
of four Mentha species in Northern Finland. J Essent Oil Res. 
2006;18(2):134-8. doi: 10.1080/10412905.2006.9699043
53. Boor B, Lefebvre N. Harvest and post-harvest handling of 
herbs. 2022; 978-3-03736-419-2.
54. Barbosa C, Fonseca M, Silva T, Finger F, Casali V, Cecon 
P. Effect of hydrocooling, packaging, and cold storage on 
the post-harvest quality of peppermint (Mentha piperita L.). 
Rev bras plantas med. 2016;18:248-55. doi: 10.1590/1983-
084X/15_135
55. Kripanand S, Guruguntla S. Effect of various drying methods 
on quality and flavor characteristics of mint leaves (Mentha 
spicata L.). J Food Pharm Sci. 2015;3(2). doi: 10.14499/jfps
56. Kannan VS, Arjunan T, Vijayan S. Drying characteristics 
of mint leaves (Mentha arvensis) dried in a solid desiccant 
dehumidifier system. J Food Sci Technol. 2021;58(2):777-86.
doi: 10.1007/s13197-020-04595-z
57. Venkatachalam SK, Thottipalayam Vellingri A, Selvaraj V. 
Low-temperature drying characteristics of mint leaves in a 
continuous-dehumidified air drying system. J Food Process 
Eng. 2020;43(4):e13384. doi: 10.1111/jfpe.13384
58. Kee LA, Shori AB, Baba AS. Bioactivity and health effects 
of Mentha spicata. IFNM. 2017;5(1):1-2. doi: 10.15761/
IFNM.1000203
59. Cirlini M, Mena P, Tassotti M, Herrlinger KA, Nieman 
KM, Dall’Asta C, et al. Phenolic and volatile composition 
of a dry spearmint (Mentha spicata L.) extract. Molecules. 
2016;21(8):1007. doi: 10.3390/molecules21081007
60. Wei H, Kong S, Jayaraman V, Selvaraj D, Soundararajan P, 
Manivannan A. Mentha arvensis and Mentha× piperita-Vital 
Herbs with Myriads of Pharmaceutical Benefits. Horticulturae. 
2023;9(2):224. doi: 10.3390/horticulturae9020224.
61. Bayan Y, Küsek M. Chemical composition and antifungal and 
antibacterial activity of Mentha spicata L. volatile oil. Cienc 
Investig Agrar. 2018;45(1):64-9. doi: 10.7764/rcia.v45i1.1897
62. Mikaili P, Mojaverrostami S, Moloudizargari M, 
Aghajanshakeri S. Pharmacological and therapeutic effects of 
Mentha Longifolia L. and its main constituent, menthol. Anc 
Sci Life. 2013;33(2):131. doi: 10.4103/0257-7941.139059.
63. Mahendran G, Verma SK, Rahman L-U. The traditional uses, 
phytochemistry and pharmacology of spearmint (Mentha 
spicata L.): A review. J Ethnopharmacol. 2021;278:114266.
doi: 10.1016/j.jep.2021.114266.
64. Chumpitazi BP, Kearns G, Shulman RJ. the physiological 
effects and safety of peppermint oil and its efficacy in irritable 
bowel syndrome and other functional disorders. Aliment 
Pharmacol Ther. 2018;47(6):738-52. doi: 10.1111/apt.14519
65. Peeyush K, Sapna M, Anushree M, Santosh S. Insecticidal 
properties of Mentha species: a review. Ind Crops Prod. 
2011;34(1):802-17. doi: 10.1016/j.indcrop.2011.02.019
66. Saeidi K, Mirfakhraie S. Chemical composition and 
insecticidal activity Mentha piperita L. essential oil against the 
cowpea seed beetle Callosobruchus maculatus F.(Coleoptera: 
Bruchidae). J Entomol Acarol Res. 2017;49(3). doi: 10.4081/
jear.2017.6769
67. Esmaeili F, Lohrasebi T, Mohammadi-Dehcheshmeh M, 
Ebrahimie E. Evaluation of the Effectiveness of Herbal 
Components Based on Their Regulatory Signature on 
Carcinogenic Cancer Cells. Cells. 2021;10(11):3139. doi: 
10.3390/cells10113139
68. Park YJ, Baek S-A, Choi Y, Kim JK, Park SU. Metabolic 
profiling of nine Mentha species and prediction of their 
antioxidant properties using chemometrics. Molecules. 
2019;24(2):258. doi: 10.3390/molecules24020258.
69. Nikavar B, ALI NA, KAMALNEZHAD M. Evaluation of the 
antioxidant properties of five Mentha species. 2008; 7(3): 203-
209. doi: 10.22037/ijpr.2010.766.
70. Anwar F, Alkharfy KM, Adam EHK. Chemo-geographical 
variations in the composition of volatiles and the biological 
attributes of Mentha longifolia (L.) essential oils from Saudi 
Arabia. Int J Pharmacol. 2017;13(5):408-24. doi: 10.3923/
ijp.2017.408.424.
71. Ultee A, Bennik M, Moezelaar R. The phenolic hydroxyl 
group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Appl Environ Microbio2002;68(4):1561-8. doi: 10.1128/AEM.68.4.1561-1568.2002.
72. Greenwell M, Rahman P. Medicinal plants: their use in 
anticancer treatment. Int J Pharm Sci Res 2015;6(10):4103-12.
doi: 10.13040/IJPSR.0975-8232.6(10).4103-12.
73. Chauhan R, Kaul M, Shahi A, Kumar A, Ram G, Tawa A. 
Chemical composition of essential oils in Mentha spicata L. 
accession [IIIM (J) 26] from North-West Himalayan region, 
India. Ind Crops Prod. 2009;29(2-3):654-6. doi: 10.1016/j.
indcrop.2008.12.003
74. Sharma V, Hussain S, Gupta M, Saxena AK. In vitro anticancer 
activity of extracts of Mentha spp. against human cancer cells. 
Indian J Biochem Biophys 2014; 51(5):416-9. 
75. Amaral RG, Fonseca CS, Silva TKM, Andrade LN, França 
ME, Barbosa-Filho JM, et al. Evaluation of the cytotoxic and 
antitumour effects of the essential oil from Mentha x villosa 
and its main compound, rotundifolone. J Pharm Pharmacol. 
2015;67(8):1100-6. doi: 10.1111/jphp.12409
76. Singh P, Pandey AK. Prospective of essential oils of the 
genus Mentha as biopesticides: A review. Front Plant Sci. 
2018;9:1295. doi: 10.3389/fpls.2018.01295.
77. Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M. 
Molecular targets for components of essential oils in the insect 
nervous system—A review. Molecules. 2017;23(1):34. doi: 
10.3390/molecules23010034.
78. Glas JJ, Schimmel BC, Alba JM, Escobar-Bravo R, Schuurink 
RC, Kant MR. Plant glandular trichomes as targets for 
breeding or engineering of resistance to herbivores. J Mol Sci 
2012;13(12):17077-103. doi: 10.3390/ijms131217077
79. Elshafie HS, Camele I. An overview of the biological effects 
of some mediterranean essential oils on human health. 
Biomed Res Int. 2017; 2017: 9268468-9268468. doi: 10.1155/ 
2017/9268468
80. Ebadollahi A, Ziaee M, Palla F. Essential oils extracted from 
different species of the Lamiaceae plant family as prospective 
bioagents against several detrimental pests. Molecules. 
2020;25(7):1556. doi: 10.3390/molecules25071556
81. Sonmezdag AS, Kelebek H, Selli S. Identification of aroma 
compounds of Lamiaceae species in Turkey using the purge 
and trap technique. Foods. 2017;6(2):10. doi: 10.3390/foods 
6020010.
82. Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, 
Emran TB, et al. Terpenes and terpenoids as main bioactive 
compounds of essential oils, their roles in human health and 
potential application as natural food preservatives. Food 
chemistry. 2022:100217. doi: 10.1016/j.fochx.2022.100217.
83. Fuchs LK, Holland AH, Ludlow RA, Coates RJ, Armstrong 
H, Pickett JA, et al. Genetic manipulation of biosynthetic 
pathways in mint. Front Plant Sci. 2022; 13: 928178. doi: 
10.3389/fpls.2022.928178.
84. Wu Z, Tan B, Liu Y, Dunn J, Martorell Guerola P, Tortajada 
M, et al. Chemical composition and antioxidant properties of 
essential oils from peppermint, native spearmint and scotch 
spearmint. Molecules. 2019;24(15):2825. doi: 10.3390/
molecules24152825
85. Choudhury RP, Kumar A, Garg A. Analysis of Indian mint 
(Mentha spicata) for essential, trace and toxic elements and its 
antioxidant behaviour. J Pharm Biomed Anal. 2006;41(3):825-
32. doi: 10.1016/j.jpba.2006.01.048
86. Kumar A, Chattopadhyay S. DNA damage protecting activity 
and antioxidant potential of pudina extract. Food Chem. 
2007;100(4):1377-84. doi: 10.1016/j.foodchem.2005.12.015
87. Scherer R, Lemos MF, Lemos MF, Martinelli GC, Martins 
JDL, da Silva AG. Antioxidant and antibacterial activities 
and composition of Brazilian spearmint (Mentha spicata L.). 
Ind Crops Prod. 2013;50:408-13. doi: 10.1016/J.INDCROP. 
2013.07.007
88. El Menyiy N, Mrabti HN, El Omari N, Bakili AE, Bakrim 
S, Mekkaoui M, et al. Medicinal Uses, Phytochemistry, 
Pharmacology, and Toxicology of Mentha spicata. Evid Based 
Complement Alternat Med. 2022; 12;2022:7990508. doi: 
10.1155/2022/7990508
89. Gaafar A, Nooman M, brahim E, Ali M, Al-Kashef AS. 
Prophylactic and Therapeutic Uses of Egyptian Mentha spicata
L., Mentha piperita L. and Ocimum basilicum L. Stalks as 
Agro-industrial Byproducts. J Biol Sci. 2018;18:354–63. doi: 
10.3923/jbs.2018.354.363
90. Biswas NN, Saha S, Ali MK. Antioxidant, antimicrobial, 
cytotoxic and analgesic activities of ethanolic extract of 
Mentha arvensis L. Asian Pac J Trop Biomed 2014;4(10):792-
7. doi: 10.12980/APJTB.4.2014C1298
91. Teixeira B, Marques A, Ramos C, Batista I, Serrano C, Matos O, 
et al. European pennyroyal (Mentha pulegium) from Portugal: 
Chemical composition of essential oil and antioxidant and 
antimicrobial properties of extracts and essential oil. Ind Crops 
Prod. 2012;36(1):81-7. doi: 10.1016/j.indcrop.2011.08.011
92. Singh R, Shushni MA, Belkheir A. Antibacterial and 
antioxidant activities of Mentha piperita L. Arab J Chem. 
2015;8(3):322-8. doi: 10.1016/j.arabjc.2011.01.019.
93. Kaur P, Mehta N, Malav OP, Chatli MK, Panwar H. 
Antimicrobial, Antioxidant and Antibiofilm Potential of 
Peppermint (Mentha piperita) Essential Oil for Application in 
Meat Products. J Anim Res. 2020;10(1):33-40. doi: 10.30954/ 
2277-940X.01.2020.4
94. Farzaei MH, Bahramsoltani R, Ghobadi A, Farzaei F, Najafi 
F. Pharmacological activity of Mentha longifolia and its 
phytoconstituents. J Tradit Chin Med 2017;37(5):710-20. doi: 
10.1016/S0254-6272(17)30327-8
95. Al-Ali KH, El-Beshbishy HA, El-Badry AA, Alkhalaf M. 
Cytotoxic activity of methanolic extract of Mentha longifolia
and Ocimum basilicum against human breast cancer. PJBS. 
2013;16(23):1744-50. doi: 10.3923/pjbs.2013.1744.1750
96. Chandirasegaran G, Elanchezhiyan C, Suhasini S, Babby A. 
Antihyperglycemic activity of Mentha piperita ethanol leaves 
extract on streptozotocin induced diabetic rats. Int J Pharm 
Res Sch. 2014;3:113-7
97. Kwon Y-II, Vattem DA, Shetty K. Evaluation of clonal 
herbs of Lamiaceae species for management of diabetes and 
hypertension. Asia Pac J Clin Nutr. 2006;15(1):107-118
98. Bayani M, Ahmadi-Hamedani M, Javan AJ. Study of 
hypoglycemic, hypocholesterolemic and antioxidant activities 
of Iranian Mentha spicata leaves aqueous extract in diabetic 
rats. IJPR. 2017;16(Suppl):75. doi: 10.22037/ijpr.2017.1998
99. Agawane SB, Gupta VS, Kulkarni MJ, Bhattacharya AK, 
Koratkar SS. Chemo-biological evaluation of antidiabetic 
activity of Mentha arvensis L. and its role in inhibition of 
advanced glycation end products. J Ayurveda Integr Med 
2019;10(3):166-70. doi: 10.1016/j.jaim.2017.07.003
100. Behnam S, Farzaneh M, Ahmadzadeh M, Tehrani AS. 
Composition and antifungal activity of essential oils of 
Mentha piperita and Lavendula angustifolia on post-harvest 
phytopathogens. Commun Agric Appl Biol Sci. 2006;71(3 Pt 
B):1321-6101. Tullio V, Roana J, Scalas D, Mandras N. Evaluation of 
the antifungal activity of Mentha x piperita (Lamiaceae) 
of Pancalieri (Turin, Italy) essential oil and its synergistic 
interaction with azoles. Molecules. 2019;24(17):3148. doi: 
10.3390/molecules24173148
102. Ali HM, Elgat WAA, El-Hefny M, Salem MZ, Taha AS, Al 
Farraj DA, et al. New approach for using of Mentha longifolia 
L. and Citrus reticulata L. essential oils as wood-biofungicides: 
GC-MS, SEM, and MNDO quantum chemical studies. 
Materials. 2021; 14(6):1361. doi: 10.3390/ma14061361
103. Teymouri M, Alizadh A. Chemical composition and antimicrobial activity of the essential oil of Mentha mozaffarianii 
Jamzad growing wild and cultivated in Iran. Nat Prod Res. 
2018;32(11):1320-3. doi: 10.1080/14786419.2017.1342082.
104. Ait-Ouazzou A, Lorán S, Arakrak A, Laglaoui A, Rota C, 
Herrera A, et al. Evaluation of the chemical composition 
and antimicrobial activity of Mentha pulegium, Juniperus 
phoenicea, and Cyperus longus essential oils from Morocco. 
Food Res Int. 2012;45(1):313-9. doi: 10.1016/j.foodres.2011. 
09.004
105. Ferhat M, Erol E, Beladjila KA, Çetintaş Y, Duru ME, Öztürk 
M, et al. Antioxidant, anticholinesterase and antibacterial 
activities of Stachys guyoniana and Mentha aquatica. Pharm 
Biol. 2017;55(1):324-9. doi: 10.1080/13880209.2016.1238488
106. Mimica-Dukić N, Božin B, Soković M, Mihajlović B, 
Matavulj M. Antimicrobial and antioxidant activities of three 
Mentha species essential oils. Planta Med. 2003;69(05):413-9.
doi: 10.1055/s-2003-39704
107. Mancuso M. The Antibacterial Activity of Mentha. London: 
IntechOpen; 2020. doi: 10.5772/intechopen.92425
108. Belemkar S, Thakre SA, Pata MK. Evaluation of antiinflammatory and analgesic activities of methanolic extract of 
Adhatoda vasica Nees and Mentha piperita Linn. Invent rapid 
: ethnopharmacol 2013;2:1-6
109. Moreno L, Bello R, Primo-Yúfera E, Esplugues J. Pharmacological properties of the methanol extract from Mentha 
suaveolens Ehrh. Phytother Res. 2002;16(S1):10-3. doi: 10. 
1002/ptr.744
110. Sun Z, Wang H, Wang J, Zhou L, Yang P. Chemical 
composition and anti-inflammatory, cytotoxic and antioxidant 
activities of essential oil from leaves of Mentha piperita grown 
in China. PloS one. 2014;9(12):e114767. doi: 10.1371/journal.
pone.0114767
111. Li Y, Liu Y, Ma A, Bao Y, Wang M, Sun Z. In vitro antiviral, antiinflammatory, and antioxidant activities of the ethanol extract 
of Mentha piperita L. Food Sci Biotechnol. 2017;26(6):1675-
83. doi: 10.1007/s10068-017-0217-9
112. Civitelli L, Panella S, Marcocci ME, De Petris A, Garzoli 
S, Pepi F, et al. In vitro inhibition of herpes simplex virus 
type 1 replication by Mentha suaveolens essential oil and 
its main component piperitenone oxide. Phytomedicine. 
2014;21(6):857-65. doi: 10.1016/j.phymed.2014.01.013
113. Orhan İE, ÖZÇELİK B, Kartal M, Kan Y. Antimicrobial and 
antiviral effects of essential oils from selected Umbelliferae 
and Labiatae plants and individual essential oil components. 
Turk J Biol 2012;36(3):239-46. doi: 10.3906/biy-0912-30
114. Farnaz M, Shahzad H, Alia S, Ghazala P, Amina W, Shazia 
S, et al. Phyto-chemical analysis, anti-allergic and antiinflammatory activity of Mentha arvensis in animals. AJPP. 
2012;6(9):613-9. doi: 10.5897/AJPP11.702
115. Hajighasemi F. Suppressive effect of a mint aqueous extract on 
IL-13 production. 2011; 38:409
116. Yamamura S, Ozawa K, Ohtani K, Kasai R, Yamasaki K. 
Antihistaminic flavones and aliphatic glycosides from Mentha 
spicata. Phytochemistry. 1998;48(1):131-6. doi: 10.1016/
S0031-9422(97)01112-6
117. Prasannakumar N, Jyothi N, Saroja S, Lokesha A. Insecticidal 
properties of Ocimum basilicum and Mentha piperita essential 
oils against South American Tomato moth, Phthorimaea 
absoluta (Meyrick) (Lepidoptera: Gelichiidae). PESTIC BIOCHEM PHYS. 2023;190:105329. doi: 10.1016/j.pestbp. 2022. 
105329.
118. Saeidi K, Mirfakhraie S. Chemical composition and 
insecticidal activity Mentha piperita L. essential oil against the 
cowpea seed beetle Callosobruchus maculatus F.(Coleoptera: 
Bruchidae). JEAR. 2017;49(3). doi: 10.4081/jear.2017.6769
119. Soto ML, Falqué E, Domínguez H. Relevance of natural 
phenolics from grape and derivative products in the formulation 
of cosmetics. Cosmetics. 2015;2(3):259-76. doi: 10.3390/
cosmetics2030259
120. Ali G, Neda G. Flavonoids and phenolic acids: Role and 
biochemical activity in plants and human. J Med Plant Res. 
2011;5(31):6697-703. doi: 10.5897/JMPR11.1404
121. Kumar N, Goel N. Phenolic acids: Natural versatile molecules 
with promising therapeutic applications. Biotechnol Rep 
(Amst). 2019;24:e00370. doi: 10.1016/j.btre.2019.e00370.
122. Fatiha B, Didier H, Naima G, Khodir M, Martin K, Léocadie 
K, et al. Phenolic composition, in vitro antioxidant effects and 
tyrosinase inhibitory activity of three Algerian Mentha species: 
M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds 
(Lamiaceae). Ind Crops Prod. 2015;74:722-30. doi: 10.1016/j.
indcrop.2015.04.038
123. Wang H, Provan GJ, Helliwell K. Determination of rosmarinic 
acid and caffeic acid in aromatic herbs by HPLC. Food Chem. 
2004;87(2):307-11. doi: 10.1016/j.foodchem.2003.12.029
124. Tang KS, Konczak I, Zhao J. Identification and quantification 
of phenolics in Australian native mint (Mentha australis R. 
Br.). Food Chem. 2016;192:698-705. doi: 10.1016/j.foodchem. 
2015.07.032
125. Mišan A, Mimica-Dukić N, Mandić A, Sakač M, Milovanović 
I, Sedej I. Development of a rapid resolution HPLC method for 
the separation and determination of 17 phenolic compounds 
in crude plant extracts. Open Chem J. 2011;9(1):133-42. doi: 
10.2478/s11532-010-0126-8
126. Teodor ED, Gatea F, Albu C, Rădulescu CM, Chira A, Radu 
GL. Polyphenols, radical scavenger activity, short-chain 
organic acids and heavy metals of several plants extracts from 
“Bucharest Delta”. Chem Pap. 2015;69(12):1582-90. doi: 
10.1515/chempap-2015-0177
127. Benedec D, Vlase L, Oniga I, Mot AC, Silaghi-Dumitrescu 
R, Hanganu D, et al. LC-MS analysis and antioxidant activity 
of phenolic compounds from two indigenous species of 
Mentha. Note I. Farmacia. 2013;61(2):262-7. doi: 10.3390/
molecules18088725
128. Swamy MK, Sinniah UR, Ghasemzadeh A. Anticancer potential 
of rosmarinic acid and its improved production through 
biotechnological interventions and functional genomics. Appl 
Microbiol Biotechnol. 2018;102(18):7775-93. doi: 10.1007/
s00253-018-9223-y
129. She GM, Xu C, Liu B, Shi RB. Polyphenolic acids from mint 
(the aerial of Mentha haplocalyx Briq.) with DPPH radical 
scavenging activity. J Food Sci 2010;75(4):C359-C62. doi: 10.1111/j.1750-3841.2010.01603.x
130. Gökbulut A, Şarer E. Simultaneous determination of phenolic 
compounds in Mentha spicata L. subsp. spicata by RP-HPLC. 
Turk J Pharm Sci. 2010;7(3):249-54
131. Bodalska A, Kowalczyk A, Włodarczyk M, Fecka I. Analysis 
of polyphenolic composition of a herbal medicinal product—
peppermint tincture. Molecules. 2019;25(1):69. doi: 10.3390/
molecules25010069
132. Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, 
Saeed M. Current approaches toward production of secondary 
plant metabolites. J Pharm Bioallied Sci. 2012;4(1):10.http://
doi.org/10.4103/0975-7406.92725
133. Kippes N, Tsai H, Lieberman M, Culp D, McCormack B, 
Wilson RG, et al. Diploid mint (M. longifolia) can produce 
spearmint type oil with a high yield potential. Sci rep. 
2021;11(1):23521. doi: 10.1038/s41598-021-02835-6.
134. Bardaweel SK, Bakchiche B, ALSalamat HA, Rezzoug M, 
Gherib A, Flamini G. Chemical composition, antioxidant, 
antimicrobial and Antiproliferative activities of essential oil 
of Mentha spicata L.(Lamiaceae) from Algerian Saharan atlas. 
BMC Complement Altern Med. 2018;18:1-7.http://doi.org/10. 
1186/s12906-018-2274-x.
135. Tafrihi M, Imran M, Tufail T, Gondal TA, Caruso G, Sharma S, 
et al. The wonderful activities of the genus Mentha: Not only 
antioxidant properties. Molecules. 2021;26(4):1118.http://doi.
org/10.3390/molecules26041118.
136. Boukhebti H, Chaker AN, Belhadj H, Sahli F, Ramdhani 
M, Laouer H, et al. Chemical composition and antibacterial 
activity of Mentha pulegium L. and Mentha spicata L. essential 
oils. Der Pharmacia Lettre. 2011;3(4):267-75. doi: 10.26538/
tjnpr/v7i4.6
137. Cao D, Liu J, Zhao Z, Yan X, Wang W, Wei J. Chemical 
Compounds Emitted from Mentha spicata Repel Aromia 
bungii Females. Insects. 2022;13(3):244. doi: 10.3390/
insects13030244
138. Riahi L, Elferchichi M, Ghazghazi H, Jebali J, Ziadi S, Aouadhi 
C, et al. Phytochemistry, antioxidant and antimicrobial activities 
of the essential oils of Mentha rotundifolia L. in Tunisia. Ind 
Crops Prod. 2013;49:883-9. doi: 10.1016/j.indcrop.2013.06.032
139. Hassanpouraghdam MB, Mohammadzadeh A, Morshedloo 
MR, Asadi M, Rasouli F, Vojodi Mehrabani L, et al. Mentha 
aquatica L. Populations from the Hyrcanian Hotspot: 
Volatile Oil Profiles and Morphological Diversity. Agronomy. 
2022;12(10):2277. doi: 10.3390/agronomy12102277
140. Morteza-Semnani K, Saeedi M, Akbarzadeh M. The essential 
oil composition of Mentha aquatica L. J Essent Oil-Bear Plants. 
2006;9(3):283-6. doi: 10.1080/0972060X.2006.10643505
141. Brahmi F, Abdenour A, Bruno M, Silvia P, Alessandra P, Danilo 
F, et al. Chemical composition and in vitro antimicrobial, 
insecticidal and antioxidant activities of the essential oils 
of Mentha pulegium L. and Mentha rotundifolia (L.) Huds 
growing in Algeria. Ind Crops Prod. 2016;88:96-105. doi: 10. 
1016/j.indcrop.2016.03.002
142. Gonçalves R, Battistin A, Pauletti G, Rota L, Serafini L. 
Antioxidant properties of essential oils from Mentha species 
evidenced by electrochemical methods. Rev bras plantas med. 
2009;11:372-82. doi: 10.1590/S1516-05722009000400004
143. Derwich E, Benziane Z, Boukir A. Antibacterial activity and 
chemical composition of the leaf essential oil of Mentha 
rotundifolia from Morocco. Elec J Env Agricult Food Chem 
2010;9(1)
144. Irina B, Maria-Magdalena Z, Ioan B. Chemical composition of 
essential oils from Mentha aquatica L. at different moments of 
the ontogenetic cycle. JMPR. 2013;7(9):470-3. doi: 10.5897/
JMPR12.902
145. Marino S, Ahmad U, Ferreira MI, Alvino A. Evaluation of 
the effect of irrigation on biometric growth, physiological 
response, and essential oil of Mentha spicata (L.). Water. 
2019;11(11):2264. doi: 10.3390/w11112264
146. Makkar MK, Sharma S, Kaur H. Evaluation of Mentha arvensis
essential oil and its major constituents for fungitoxicity. J Food 
Sci Technol. 2018;55(9):3840-4. doi: 10.1007/s13197-018-
3291-y
147. Pandey A, Rai M, Acharya D. Chemical composition and 
antimycotic activity of the essential oils of corn mint (Mentha 
arvensis) and lemon grass (Cymbopogon flexuosus) against 
human pathogenic fungi. Pharm Biol. 2003;41(6):421-5. doi: 
10.1076/phbi.41.6.421.17825
148. Abdelli M, Moghrani H, Aboun A, Maachi R. Algerian Mentha 
pulegium L. leaves essential oil: Chemical composition, 
antimicrobial, insecticidal and antioxidant activities. Ind Crops 
Prod. 2016;94:197-205. doi: 10.1016/j.indcrop.2016.08.042
149. Lorenzo D, Paz D, Dellacassa E, Davies P, Vila R, Cañigueral 
S. Essential oils of Mentha pulegium and Mentha rotundifolia
from Uruguay. Braz Arch Biol Technol 2002;45:519-24. doi: 
10.1590/S1516-89132002000600016
150. Başer K, Kürkçüoğlu M, Demirci B, Özek T, Tarımcılar 
G. Essential oils of Mentha species from Marmara region 
of Turkey. J Essent Oil Res. 2012;24(3):265-72. doi: 
10.1080/10412905.2012.676775
151. Do Ngoc Dai TDT, Emmanuel EE, Oladimeji O, Abdulkabir 
IAO. Study on essential oil of Mentha aquatica L. from 
Vietnam+++++. Am J Essent Oil. 2015;2(4):12-6
152. Zhao D, Xu YW, Yang GL, Husaini AM, Wu W. Variation of 
essential oil of Mentha haplocalyx Briq. and Mentha spicata L. 
from China. Ind Crops Prod 2013;42:251-60. doi: 10.1016/j.
indcrop.2012.06.010
153. Telci I, Demirtas I, Bayram E, Arabaci O, Kacar O. 
Environmental variation on aroma components of pulegone/
piperitone rich spearmint (Mentha spicata L.). Ind Crops Prod 
2010;32(3):588-92. doi: 10.1016/j.indcrop.2010.07.009
154. Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen 
A, et al. Antimicrobial and antioxidant properties of the 
essential oils and methanol extract from Mentha longifolia
L. ssp. longifolia. Food Chem. 2007;103(4):1449-56. doi: 
10.1016/j.foodchem.2006.10.061
155. Koliopoulos G, Pitarokili D, Kioulos E, Michaelakis A, Tzakou 
O. Chemical composition and larvicidal evaluation of Mentha, 
Salvia, and Melissa essential oils against the West Nile virus 
mosquito Culex pipiens. Parasitol Res. 2010;107(2):327-35.
doi: 10.1007/s00436-010-1865-3
156. Brada M, Bezzina M, Marlier M, Lognay G. Chemical 
composition of the leaf oil of Mentha rotundifolia (L.) 
from Algeria. J Essent Oil Res 2006;18(6):663-5. doi: 
10.1080/10412905.2006.9699198
157. Singh A, Dwivedi P. Methyl-jasmonate and salicylic acid 
as potent elicitors for secondary metabolite production in 
medicinal plants: a review. J Pharmacogn Phytochem. 2018;7 
(1):750-7. 
158. Gonçalves S, Romano A. Production of plant secondary 
metabolites by using biotechnological tools. In: Vijayakumar 
R, Raja SS, editors. Secondary metabolites-sources andapplications. London: IntechOpen; 2018. p. 81-99. doi: 10. 
5772/intechopen.76414
159. Yousefian S, Ahmadi Nik F, Lohrasebi T, Mirshahvalad 
S, Gharanjik S, Esfahani K. Investigation of Nitrogen and 
Phosphate Effect on Growth and Rosmarinic Acid Production 
in Transgenic Mentha aquatica Hairy Root Induction. JMPB. 
2021;10(2):199-207
160. Naik PM, Al-Khayri JM. Abiotic and biotic elicitors-role in 
secondary metabolites production through in vitro culture 
of medicinal plants. In: Shanker AK, Shanker C, editors. 
Abiotic and biotic stress in plants-recent advances and future 
perspectives Rijeka: InTech. London: IntechOpen; 2016. p. 
247-77. doi: 10.5772/61442
161. Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, 
Abdel-Salam EM, Qahtan AA, et al. Production of plant 
secondary metabolites: Examples, tips and suggestions for 
biotechnologists. Genes. 2018;9(6):309. doi: 10.3390/genes 
9060309
162. Gunjegaonkar Shivshankar M, Joshi Amol A, Wankhede 
Sagar B, Siraskar Balasaheb D, Merekar Abhijit N, Shinde 
Sachin D. Potential Defensive Involvement of Methyl 
Jasmonate in Oxidative Stress and Its Related Molecular 
Mechanisms. London: IntechOpen; 2022. p. 67. doi: 10.5772/
intechopen.102783
163. Gharib F, da Silva JT. Composition, total phenolic content and 
antioxidant activity of the essential oil of four Lamiaceae herbs. 
Medicinal and aromatic plant science and biotechnology. 
2013;7(1):19-27
164. Guedon DJ, Pasquier BP. Analysis and distribution of flavonoid 
glycosides and rosmarinic acid in 40 Mentha x piperita 
clones. J Agric Food Chem. 1994;42(3):679-84. doi: 10.1021/
jf00039a015.
165. Fecka I, Turek S. Determination of water-soluble polyphenolic 
compounds in commercial herbal teas from Lamiaceae: 
peppermint, melissa, and sage. J Agric Food Chem 2007; 
55(26):10908-17. doi: 10.1021/jf072284d.
166. Fecka I, Raj D, Krauze-Baranowska M. Quantitative 
determination of four water-soluble compounds in herbal drugs 
from Lamiaceae using different chromatographic techniques. 
Chroma 2007;66:87-93. doi: 10.1365/s10337-007-0233-7.
167. Krzyzanowska J, Janda B, Pecio L, Stochmal A, Oleszek W, 
Czubacka A, et al. Determination of polyphenols in Mentha 
longifolia and M. piperita field-grown and in vitro plant 
samples using UPLC-TQ-MS. J AOAC Int. 2011;94(1):43-50.
doi: 10.1093/jaoac/94.1.43.
168. Hadjmohammadi M, Karimiyan H, Sharifi V. Hollow fibrebased liquid phase microextraction combined with highperformance liquid chromatography for the analysis of 
flavonoids in Echinophora platyloba DC. and Mentha piperita. 
Food Chem. 2013;141(2):731-5. doi: 10.1016/j.foodchem. 
2013.02.083.
169. Zheng J, Chen G-T, Gao H-Y, Wu B, Wu L-J. Two new lignans 
from Mentha spicata L. J Asian Nat Prod Res. 2007;9(5):431-
5. doi: 10.1080/10286020500384641.
170. Proestos C, Chorianopoulos N, Nychas G-J, Komaitis M. RPHPLC analysis of the phenolic compounds of plant extracts. 
Investigation of their antioxidant capacity and antimicrobial 
activity. J Agric Food Chem. 2005;53(4):1190-5. doi: 10.1021/
jf040083t.
171. Dobiáš P, Pavlíková P, Adam M, Eisner A, Beňová B, Ventura 
K. Comparison of pressurised fluid and ultrasonic extraction 
methods for analysis of plant antioxidants and their antioxidant 
capacity. Open Chemistry. 2010;8:87-95. doi: 10.2478/s11532-
009-0125-9.
172. Khani A, Asghari J. Insecticide activity of essential oils 
of Mentha longifolia, Pulicaria gnaphalodes and Achillea 
wilhelmsii against two stored product pests, the flour 
beetle, Tribolium castaneum, and the cowpea weevil, 
Callosobruchus maculatus. J Insect Sci 2012;12(1).http://doi.
org/10.1673/031.012.7301.
173. Ertaş A, Gören AC, Haşimi N, Tolan V, Kolak U. Evaluation 
of Antioxidant, Cholinesterase Inhibitory and Antimicrobial 
Properties of Mentha longifolia subsp. noeana and Its Secondary 
Metabolites. Rec Nat Prod. 2015;9(1). doi: 10.1055/s-0032-
1320810
174. Aggarwal, BB & Kunnumakkara, AB, Molecular targets and 
therapeutic uses of spices: Modern uses for ancient medicine. 
World Scientific Publishing Co. 2009. 430 p. doi:10.1142/7150
175. Vivek S, Nisha S, Harbans S, Devendra SK, Vijaylata P, Bikram 
S, et al. Comparative account on GC-MS analysis of Mentha 
arvensis L.“Cornmint” from three different locations of north 
India. Int J Drug Dev Res. 2009;1:1-9. doi: 10.1142/7150.
176. Zaidi F, Voirin B, Jay M, Viricel MR. Free flavonoid aglycones 
from leaves of Mentha pulegium and Mentha suaveolens
(Labiatae). Phytochemistry. 1998;48(6):991-4. doi: 10.1016/
S0031-9422(97)01042-X.
177. Andro A-R, Boz I, Zamfirache M-M, Burzo I. Chemical 
composition of essential oils from Mentha aquatica L. at 
different moments of the ontogenetic cycle. J Med Plant Res 
2013;7(9):470-3. doi: 10.5897/JMPR12.902.
178. Mimica-Dukic N, Bozin B. Mentha L. species (Lamiaceae) as 
promising sources of bioactive secondary metabolites. Curr 
Pharm Des. 2008;14(29):3141-50. doi: 10.2174/138161208 
786404245
179. Veronese P, Li X, Niu X, Weller SC, Bressan RA, Hasegawa 
PM. Bioengineering mint crop improvement. PCTOC. 
2001;64(2):133-44. doi: 10.1023/A:1010649207445
180. Lange BM, Mahmoud SS, Wildung MR, Turner GW, Davis 
EM, Lange I, et al. Improving peppermint essential oil 
yield and composition by metabolic engineering. PNAS. 
2011;108(41):16944-9. doi: 10.1073/pnas.1111558108
181. Wang Q, Reddy VA, Panicker D, Mao HZ, Kumar N, Rajan C, 
et al. Metabolic engineering of terpene biosynthesis in plants 
using a trichome-specific transcription factor Ms YABBY 
5 from spearmint (Mentha spicata). Plant Biotechnol J. 
2016;14(7):1619-32. doi: 10.1111/pbi.12525
182. Koley S, Grafahrend-Belau E, Raorane ML, Junker BH. The 
mevalonate pathway contributes to monoterpene production in 
peppermint. bioRxiv. 2020. doi: 10.1101/2020.05.29.124016
183. Jin J, Panicker D, Wang Q, Kim MJ, Liu J, Yin J-L, et al. 
Next generation sequencing unravels the biosynthetic ability 
of spearmint (Mentha spicata) peltate glandular trichomes 
through comparative transcriptomics. BMC Plant Biol 
2014;14(1):1-15. doi: 10.1186/s12870-014-0292-5
184. Lange BM, Croteau R. Genetic engineering of essential oil 
production in mint. Curr Opin Plant Biol. 1999;2(2):139-44.
doi: 10.1016/s1369-5266(99)80028-4
185. Diemer F, Jullien F, Faure O, Moja S, Colson M, MatthysRochon E, et al. High efficiency transformation of peppermint 
(Mentha× piperita L.) with Agrobacterium tumefaciens. Plant 
Sci. 1998;136(1):101-8. doi: 10.1016/S0168-9452(98)00107-1
186. Spencer, A., Hamill, J.D., Rhodes, M.J.C.. Transformation in Mentha Species (Mint). In: Bajaj, Y.P.S. (eds) Plant Protoplasts 
and Genetic Engineering III. Biotechnology in Agriculture 
and Forestry. Springer, Berlin, Heidelberg. 1993; 22. doi: 
10.1007/978-3-642-78006-6_25
187. Alonso WR, Crock J, Croteau R. Production and characterization 
of polyclonal antibodies in rabbits to 4S-limonene synthase 
from spearmint (Mentha spicata). Arch Biochem Biophys. 
1993;301(1):58-63. doi: 10.1006/abbi.1993.1114
188. Krasnyanski S, May R, Loskutov A, Ball T, Sink K. 
Transformation of the limonene synthase gene into peppermint 
(Mentha piperita L.) and preliminary studies on the essential 
oil profiles of single transgenic plants. Theor Appl Genet. 
1999;99(3):676-82. doi: 10.1007/s001220051284
189. Mahmoud SS, Croteau RB. Metabolic engineering of 
essential oil yield and composition in mint by altering 
expression of deoxyxylulose phosphate reductoisomerase and 
menthofuran synthase. PNAS. 2001;98(15):8915-20. doi: 10.1073/
pnas.141237298
190. Mahmoud SS, Croteau RB. Menthofuran regulates essential 
oil biosynthesis in peppermint by controlling a downstream 
monoterpene reductase. PNAS. 2003;100(24):14481-6. doi: 
10.1073/pnas.2436325100
191. Mahmoud SS, Williams M, Croteau R. Cosuppression of 
limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry. 2004; 
65(5):547-54. doi: 10.1016/j.phytochem.2004.01.005
192. Croteau RB, Davis EM, Ringer KL, Wildung MR. (−)-Menthol 
biosynthesis and molecular genetics. Naturwissenschaften. 
2005;92(12):562-77. doi: 10.1007/s00114-005-0055-0
193. Mahadevappa N, Suvarna DKHPV, Moses V, Chandrashekar 
S, Cowda S. Study on advanced application of mint oil. J Adv 
Scient Res 2014;5(4):1-3.3
194. Amarr V, Nori P, Zhu H. Spearmint R2R3-MYB transcription 
factor MsMYB negatively regulates monoterpene production 
and suppresses the expression of geranyl diphosphate synthase 
large subunit (MsGPPS. LSU). Plant Biotechnol J. 2017; 
15(9):1105-1119. doi: 10.1111/pbi.12701
195. Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, 
Kessler SA, et al. Contribution of isopentenyl phosphate to 
plant terpenoid metabolism. Nature plants. 2018;4(9):721-9.
doi: 10.1038/s41477-018-0220-z
196. Georgiev V, Pavlov A. Salvia biotechnology. Switzerland: 
Springer 2017. doi: 10.1007/978-3-319-73900-7
197. Diemer F, Caissard J-C, Moja S, Chalchat J-C, Jullien F. Altered 
monoterpene composition in transgenic mint following the 
introduction of 4S-limonene synthase. Plant Physiol Biochem. 
2001;39(7-8):603-14. doi: 10.1016/S0981-9428(01)01273-6
198. Toogood HS, Cheallaigh AN, Tait S, Mansell DJ, Jervis A, 
Lygidakis A, et al. Enzymatic menthol production: one-pot 
approach using engineered Escherichia coli. ACS Synthetic 
Biology. 2015;4(10):1112-23. doi: 10.1021/acssynbio.5b00092
199. Khojasteh SC, Oishi S, Nelson SD. Metabolism and toxicity 
of menthofuran in rat liver slices and in rats. Chem Res Toxicol 
2010;23(11):1824-32. doi: 10.1021/tx100268g
200. Malekmohammad K, Rafieian-Kopaei M, Sardari S, 
Sewell RD. Toxicological effects of Mentha x piperita 
(peppermint): a review. Toxin Rev. 2021;40(4):445-59. doi: 
10.1080/15569543.2019.1647545
201. Shekarchi M, Hajimehdipoor H, Saeidnia S, Gohari AR, 
Hamedani MP. Comparative study of rosmarinic acid content 
in some plants of Labiatae family. Pharmacogn Mag. 
2012;8(29):37. doi: 10.4103/0973-1296.93316
202. Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, et al. The c4h, 
tat, hppr and hppd genes prompted engineering of rosmarinic 
acid biosynthetic pathway in Salvia miltiorrhiza hairy root 
cultures. PLoS One. 2011;6(12):e29713. doi: 10.1371/journal.
pone.0029713
203. Xu F, Ning Y, Zhang W, Liao Y, Li L, Cheng H, et al. An 
R2R3-MYB transcription factor as a negative regulator of 
the flavonoid biosynthesis pathway in Ginkgo biloba. Funct 
Integr Genomics. 2014;14(1):177-89. doi: 10.1007/s10142-
013-0352-1
204. Zhang Y, Yan Y-P, Wu Y-C, Hua W-P, Chen C, Ge Q, et al. 
Pathway engineering for phenolic acid accumulations in Salvia 
miltiorrhiza by combinational genetic manipulation. Metab 
Eng. 2014;21:71-80. doi: 10.1016/j.ymben.2013.10.009
205. Li C, Lu S. Genome-wide characterization and comparative 
analysis of R2R3-MYB transcription factors shows the 
complexity of MYB-associated regulatory networks in Salvia 
miltiorrhiza. BMC Genet. 2014;15(1):1-12. doi: 10.1186/1471-
2164-15-277
206. Park SU, Uddin R, Xu H, Kim YK, Lee SY. Biotechnological 
applications for rosmarinic acid production in plant. Afr J 
Biotechnol. 2008;7(25). doi: 10.4314/ajb.v7i25.59707
207. Vining KJ, Johnson SR, Ahkami A, Lange I, Parrish AN, Trapp 
SC, et al. Draft genome sequence of Mentha longifolia and 
development of resources for mint cultivar improvement. Mol 
Plant. 2017;10(2):323-39. doi: 10.1016/j.molp.2016.10.018
208. Nishida K, Kondo A. CRISPR-derived genome editing technologies for metabolic engineering. Metab Eng. 2021;63:141-7.
doi: 10.1016/j.ymben.2020.12.002