The Gene Manipulation and Cellular Immunotherapy Combination in the Treatment of Cancer

Document Type : Review Paper


1 Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran

2 Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran

3 Iran University of Medical Sciences, Tehran, Iran

4 Department of Medical Laboratory Sciences, Allied Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran

5 Department of Pathology, University of California, Los Angeles, USA

6 Department of Geriatric Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran


Context: The immune system is directly linked to the tumors, from tumor formation to the tumor’s development and 
metastasis. So, the interest of scientists over the protective immunological mechanisms has increased and shown gifted 
strategy in cancer treatment. 
Evidence acquisition: Genetic engineering and cellular immunotherapy are two different advanced molecular mechanisms to modify the immune responses and genome. Gene manipulation is the bioengineering technology that allows vectors to transfer new genetic information into the target cells. Cellular immunotherapy is an excellent strategy that connects the body’s immune system to fight cancer. 
Results & Conclusions: This review described that combination of genetic engineering and cellular immunotherapy has 
brought the novel antitumor repressive molecules stopping the tumor tissue immune tolerance and significantly expanding  cancer therapy’s effectiveness. Usually, cell immunotherapy and genetic engineering are considered two independent  processes, and, in this review, we believe them in combinations. Here, we review these two novel approaches, and they  are both combinations in terms of technological advances and clinical experience.


Main Subjects

  1. References

    1. Sathyanarayanan V, Neelapu SS. Cancer immunotherapy: Strategies for personalization and combinatorial approaches. Mol Onco. 2015;9(10):2043-2053. doi:10.1016/j.molonc.2015. 10.009
    2. Aghamir SMK, Shafiee G, Ebrahimi M, Yarmohammadi H, Razmande R, Ahmadi H, et al. Comparison on Diagnostic Accuracy of Prostate Cancer Detection Tools: A Systematic Review and Meta-Analysis. Trans Res Urol. 2019;1(1):27-39. doi:  10.22034/AU.2020.226654.1012
    3. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Can Sci. 2019;110(7):2080. doi:10.1111/cas.14069
    4. Sun BL. Current Microsatellite Instability Testing in Management of Colorectal Cancer. Clin Colorectal Can. 2021;20(1):e12-e20. doi: 10.1016/j.clcc.2020.08.001.
    5. Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 2016;39(1). doi: 10.1097/COC.0000000000000239
    6. Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381-3385. doi:1158/0008-5472.CAN-05-4303
    7. FDA approves pembrolizumab for esophageal or GEJ carcinoma. March 22, 2021. Available at: Accessed march 28, 2021.
    8. Gao X, McDermott DF. Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opin Biol Ther. 2018 2;18(9):947-957. doi: 10.1080/14712598.2018.1513485
    9. Liao D, Yu Y, Mei Q, Wang Z, Li X, Jia Y, Kong F. Advances in Immunotherapy of Malignant Pleural Mesothelioma. Onco Targets Ther. 2021;14:4477. doi:10.2147/OTT.S317434
    10. Rocco D, Della Gravara L, Battiloro C, Gridelli C. The role of nivolumab combined to immunotherapy and/or chemotherapy in the first-line treatment of advanced Non Small Cell Lung Cancer. Expert Opin Biol Ther.. 2021;21(3):303-309. doi:1080/14712598.2021.1869209
    11. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517-2526. doi: 10.1056/NEJMoa1104621
    12. Secondino S, Zecca M, Licitra L, Gurrado A, Schiavetto I, Bossi P, et a T-cell therapy for EBV-associated nasopharyngeal carcinoma: preparative lymphodepleting chemotherapy does not improve clinical results. Ann Oncol.. 2012;23(2):435-441. doi:10.1093/annonc/mdr134
    13. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol. 2012;124(2):192-198. doi: 10.1016/j.ygyno.2011.09.039
    14. Aghamir SMK, Heshmat R, Ebrahimi M, Khatami F. Liquid biopsy: the unique test for chasing the genetics of solid tumors. Epigenetics insights. 2020;13:2516865720904052. doi:10.1177/2516865720904052
    15. Aghamir SMK, Heshmat R, Ebrahimi M, Ketabchi SE, Dizaji SP, Khatami F. The impact of succinate dehydrogenase gene (SDH) mutations in renal cell carcinoma (RCC): A systematic review. Onco Targets Ther. 2019;12:7929. doi: 10.2147/OTT.S207460
    16. Khatami F, Hasanzad M. Circulating Tumor Cells as a Novel Prostate Cancer Diagnostic Tool. Transl Res Urol. 2020;2(3):93-95. doi: 10.22034/TRU.2020.260779.1055
    17. Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfus Med Hemotherapy. 2019;46(1):15-24. doi:10.1159/000496870
    18. Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):30. doi:10.1186/s13045-020-00856-8
    19. Saadati M, Tamehri S, Pour Kamali M, Taheri D. Phosphatase and tensin gene associated with features of aggressive prostate cancer. Trans Res  Urol. 2021;3(1):32-37. doi: 10.22034/TRU.2021.276823.1062
    20. Tamehri Zadeh SS, Taheri D, Shivarani S, Khatami F, Kazemi R. Liquid Biopsy in Prostate Cancer Diagnosis and Prognosis: A Narrative Review. Trans Res  Urol.. 2020;2(4):139-146. doi: 10.22034/TRU.2021.270071.1061
    21. Hill JA, Li D, Hay KA, Green ML, Cherian S, Chen X, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood. 2018;131(1):121-130.  doi: 10.1182/blood-2017-07-793760.
    22. Fay EK, Graff JN. Immunotherapy in Prostate Cancer. J Cancer. 2020;12(7):1752. doi:10.3390/cancers12071752
    23. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651-668. doi:10.1038/s41577-020-0306-5
    24. Khatami F, Aghamir SMK, Salmaninejad A, Shivarani S, Khorrami MH. Biomarkers for Prostate Cancer Diagnosis from Genetic Perspectives. Trans Res Urol. 2020;2(2):51-58. doi: 10.22034/TRU.2020.258970.1053
    25. Boyd AC, Guo S, Huang L, Kerem B, Oren YS, Walker AJ, et al. New approaches to genetic therapies for cystic fibrosis. J. Cyst. Fibros. 2020;19:S54-S59. doi: 10.1016/j.jcf.2019.12.012
    26. Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249-254. doi:10.1038/s41591-018-0326-x
    27. Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu QV, Gooley T, et al. Factors impacting progression-free survival after CD19-specific CAR-T cell therapy for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Blood. 2018;132:1681. doi:10.1182/blood-2018-99-115126
    28. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361(6405):866-869. doi: 10.1126/science.aat5011
    29. Makarova KS, Wolf YI, Koonin EV. Classification and nomenclature of CRISPR-Cas systems: where from here? The CRISPR J. 2018;1(5):325-336. doi: 10.1089/crispr.2018.0033
    30. Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, et al. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol. 2020;11. doi: 10.3389/fimmu.2020. 02062
    31. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. JNCI: J Natl Cancer Inst. 1994;86(15):1159-1166. doi: 10.1093/jnci/86.15.1159.
    32. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. immunol.. 2018;9:14. doi: 10.3389/fimmu.2018.00014.
    33. Forget M-A, Tavera RJ, Haymaker C, Ramachandran R, Malu S, Zhang M, et al. A novel method to generate and expand clinical-grade, genetically modified, tumor-infiltrating lymphocytes. Front immunol. 2017;8:908. doi: 10.3389/fimmu.2017.00908
    34. Rohaan MW, van den Berg JH, Kvistborg P, Haanen JB. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J Immuno Ther Cancer . 2018;6(1):1-16. doi:  10.1186/s40425-018-0391-1
    35. Hopewell EL, Cox C, Pilon-Thomas S, Kelley LL. Tumor-infiltrating lymphocytes: Streamlining a complex manufacturing process. Cytotherapy. 2019;21(3):307-314. doi: 10.1016/j.jcyt.2018.11.004.
    36. Mo F, Watanabe N, McKenna MK, Hicks MJ, Srinivasan M, Gomes-Silva D, et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. NatBiotechnol.. 2021;39(1):56-63. doi:  10.1038/s41587-020-0601-5.
    37. Raza A, Merhi M, Inchakalody VP, Krishnankutty R, Relecom A, Uddin S, et al. Unleashing the immune response to NY-ESO-1 cancer testis antigen as a potential target for cancer immunotherapy. J Transl.Med.. 2020;18:1-11. doi:10.1186/s12967-020-02306-y
    38. Tsuji T, Yoneda A, Matsuzaki J, Miliotto A, Ryan C, Koya RC, et al. Rapid construction of antitumor T-cell receptor vectors from frozen tumors for engineered T-cell therapy. Cancer ImmunolRes. 2018;6(5):594-604. doi: 10.1158/2326-6066.CIR-17-0434.
    39. Yu H, Pan J, Guo Z, Yang C, Mao L. CART cell therapy for prostate cancer: status and promise. Onco Targets Ther. 2019;12:391. doi: 10.2147/OTT.S185556
    40. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol . 2015;33(6):540. doi: 10.1200/JCO.2014.56.2025
    41. Schultz L, Mackall C. Driving CAR T cell translation forward. Sci Transl Med. 2019;11(481). doi: 10.1126/scitranslmed.aaw 2127.
    42. Li D, Li N, Zhang Y-F, Fu H, Feng M, Schneider D, et al. Persistent polyfunctional chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. JGastroenterol. 2020;158(8):2250-2265.e20. doi: 10.1053/j.gastro.2020.02.011.
    43. Rapp M, Grassmann S, Chaloupka M, Layritz P, Kruger S, Ormanns S, et al. CC chemokine receptor type-4 transduction of T cells enhances interaction with dendritic cells, tumor infiltration and therapeutic efficacy of adoptive T cell transfer. Oncoimmunology. 2016;5(3):e1105428. doi: 10.1080/2162402X.2015.1105428.
    44. Zhang Q, Lu W, Liang C-L, Chen Y, Liu H, Qiu F, et al. Chimeric antigen receptor (CAR) Treg: a promising approach to inducing immunological tolerance. Front Immunol. 2018;9:2359. doi: 10.3389/fimmu.2018.02359
    45. Deniger DC, Kwong MLM, Pasetto A, Dudley ME, Wunderlich JR, Langhan MM, et al. A pilot trial of the combination of vemurafenib with adoptive cell therapy in patients with metastatic melanoma. Clin Cancer Res. 2017;23(2):351-362. doi: 10.1158/1078-0432.CCR-16-0906
    46. Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. The oncologist. 2018;23(8):943. doi:10.1634/theoncologist.2018-0028.
    47. Hay KA, Hanafi L-A, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood. 2017;130(21):2295-2306. doi: 10.1182/blood-2017-06-793141.
    48. Aghamir ZS, Shivarani S, Manafi Shabestari R. The Molecular Structure and Case Fatality Rate of COVID-19. Trans Res Urol. 2020;2(3):96-106. doi: 10.22034/TRU.2021.269615.1060
    49. Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer letters. 2020;472:175-180. doi:10.1016/j.canlet.2019.11.033
    50. Béziat V, Liu LL, Malmberg J-A, Ivarsson MA, Sohlberg E, Björklund AT, et al. N.K. cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood. 2013;121(14):2678-2688. doi: 10.1182/blood-2012-10-459545
    51. Oberschmidt O, Kloess S, Koehl U. Redirected primary human chimeric antigen receptor natural killer cells as an “off-the-shelf immunotherapy” for improvement in cancer treatment. Front Immunol. 2017;8:654. doi: 10.3389/fimmu.2017.00654
    52. Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319(6055):675-678. doi: 10.1038/319675a0.
    53. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBio Medicine. 2020;59:102975. doi: 10.1016/j.ebiom.2020.102975
    54. Sarvaria A, Jawdat D, Madrigal JA, Saudemont A. Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications. Front Immunol. 2017;8:329. doi: 10.3389/fimmu.2017.00329
    55. Pfefferle A, Huntington ND. You have got a fast CAR: chimeric antigen receptor NK. cells in cancer therapy. Cancers. 2020;12(3):706. doi: 10.3390/cancers12030706
    56. Khatami F, Nasir Shirazi M, Aghamir SMK. A Systematic Review of Circulating Tumor Cells in Renal Cell Carcinoma. Trans Res Urol. 2021;3(1):10-8. doi: 10.22034/TRU.2020.257587.1050
    57. Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559(7714):405-409. doi: 10.1038/s41586-018-0326-5