A Novel Multi-Epitope Edible Vaccine Candidate for Newcastle Disease Virus: In Silico Approach

Document Type : Research Paper

Authors

1 Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

2 Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.

3 Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

Abstract

Background: Newcastle disease, is one of the most important illnesses in the aviculture industry which shows a constant 
threat. In this case, the vaccine could be considered an important solution to prevent and control this disease. So, the 
development of a new and more effective vaccine against Newcastle disease is an urgent need. Immune informatics is an 
important field that provides insight into the experimental procedure and could facilitate the analysis of large amounts of immunological data generated by experimental research and help to design a new vaccine candidate. 
Objectives: This study is aimed at bioinformatics to investigate and select the most immunogenic and conserved epitopes derived from F and HN glycoproteins, which play a key role in pathogenesis and immunity. This strategy could cover a 
wide range of Newcastle disease viruses.
Materials and Method: For expression in both E. coli (as an injectable recombinant vaccine candidate) and maize plant 
(as an edible vaccine candidate) host, two constructs were designed and analyzed separately. Furthermore, the role of 
LTB as an effective bio-adjuvant for general eliciting of the immune system and simultaneous expressions with those 
two antigens was evaluated. Hence, here a multimeric recombinant protein with the abbreviation LHN2F from the highly 
immunogenic part of HN, F and LTB proteins were designed. The synthetic construct was analyzed based on different 
bioinformatics tools. 
Results: The proper immunogenicity and stability of this multimeric fusion protein have been shown by immunoinformatic methods from various servers. To confirm the function of the designed protein, the final molecule was docked to chicken MHC class I using the Pyrex-python 0.8 program. the results of Immune Epitope analysis were confirmed by the docking results between protein and receptor.
Conclusions: ‎The results of structural and immunological computational studies proposed that the protein deduced from 
this novel construct could act as a vaccine candidate for Newcastle disease virus‎ control and prophylactic.

Keywords

Main Subjects


  1. References

    1. Alexander DJ, Aldous EW, Fuller CM. The long view: a selective review of 40 years of Newcastle disease research. Avian Pathol. 2012;41(4):329-335. doi: 10.1080/03079457.2012.697991
    2. http://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2020. 2020.
    3. Lim MAG. Newcastle Disease Vaccines. Commercial Plant-Produced Recombinant Protein Products. 2014;68:179-195. doi:10.1007/978-3-662-43836-7_10
    4. Thomas DR, Walmsley AM. Plant-Made Veterinary Vaccines for Newcastle Disease Virus. Springer. 2018;149-167. doi:10.1007/978-3-319-90137-4_6
    5. Zhao Y, Hammond RW. Development of a candidate vaccine for Newcastle disease virus by epitope display in the Cucumber mosaic virus capsid protein. Biotechnol Lett. 2005;27(6):375-382. doi:10.1007/s10529-005-1773-2
    6. Hu S, Wang T, Liu Y, Meng C, Wang X, Wu Y, et al. Identification of a variable epitope on the Newcastle disease virus hemagglutinin-neuraminidase protein. Vet Microbiol. 2010;140(1-2):92-97. doi:10.1016/j.vetmic.2009.07.029
    7. Motamedi MJ, Shahsavandi S, Amani J, Kazemi R, Takrim S, Jafari M, et al. Immunogenicity of the Multi-Epitopic Recombinant Glycoproteins of Newcastle Disease Virus: Implications for the Serodiagnosis Applications. Iran J Biotechnol. 2018;16(4):e1749. doi:10.21859/ijb.1749
    8. Davies MN, Flower DR. Harnessing bioinformatics to discover new vaccines. Drug Discov Today. 2007;12(9-10):389-395. doi:10.1016/j.drudis.2007.03.010
    9. Motamedi MJ, Amani J, Shahsavandi S, Salmanian AH. In Silico Design of Multimeric HN-F Antigen as a Highly Immunogenic Peptide Vaccine Against Newcastle Disease Virus. Int J Pept ResTher. 2013;20(2):179-194. doi:10.1007/s10989-013-9380-x
    10. Miles S, Portela M, Cyrklaff M, Ancarola ME, Frischknecht F, Duran R, et al. Combining proteomics and bioinformatics to explore novel tegumental antigens as vaccine candidates against Echinococcus granulosus infection. J Cell Biochem. 2019;120(9):15320-15336. doi:10.1002/jcb.28799
    11. Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, et al. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep. 2019;9(1):4409. doi:10.1038/s41598-019-40833-x
    12. Hagiwara Y, Iwasaki T, Asanuma H, Sato Y, Sata T, Aizawa C, et al. Effects of intranasal administration of cholera toxin (or Escherichia coli heat-labile enterotoxin) B subunits supplemented with a trace amount of the holotoxin on the brain. Vaccine. 2001;19(13-14):1652-1660. doi:10.1016/S0264-410X(00)00412-6
    13. Fingerut E, Gutter B, Goldway M, Eliahoo D, Pitcovski J. B subunit of E. coli enterotoxin as adjuvant and carrier in oral and skin vaccination. Vet Immunol Immunopathol. 2006;112(3-4):253-263. doi:10.1016/j.vetimm.2006.03.005
    14. Sim J-S, Pak H-K, Kim D-S, Lee S-B, Kim Y-H, Hahn B-S. Expression and Characterization of Synthetic Heat-Labile Enterotoxin B Subunit and Hemagglutinin–Neuraminidase-Neutralizing Epitope Fusion Protein in Escherichia coli and Tobacco Chloroplasts. Plant Mol Biol Rep. 2009;27(3):388-399. doi:10.1007/s11105-009-0114-3
    15. Kazemi R, Amani J, Akhavian A, Mousavi A, Salmanian AH. Design and analysis of trivalent chimeric vaccine candidate against three enterotoxigenic bacteria: an in-silico approach. Minerva Biotecnol. 2017;29(2):62-75. doi:10.23736/S1120-4826.16.01997-2
    16. Khoury C, Meinersmann R. A genetic hybrid of the Campylobacter jejuni flaA gene with LT-B of Escherichia coli and assessment of the efficacy of the hybrid protein as an oral chicken vaccine. Avian Dis. 1995;812-20. doi:10.2307/1592418
    17. Jawale CV, Lee JH. Characterization of a Salmonella Typhimurium ghost carrying an adjuvant protein as a vaccine candidate for the protection of chickens against virulent challenge. Avian Pathol. 2014;43(6):506-513. doi:10.1080/03079457.2014.966303
    18. Lei H, Peng X, Shu H, Zhao D. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus. J Med Virol. 2015;87(1):39-44. doi:10.1002/jmv.23983
    19. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405-414. doi:10.1016/j.jbi.2014.11.003
    20. Potocnakova L, Bhide M, Pulzova LB. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction. J Immunol Res. 2016;2016:6760830. doi:10.1155/2016/6760830
    21. Samykannu G, Vijayababu P, Antonyraj CB, Perumal P, Narayanan S, Basheer Ahamed SI, et al. In Silico Characterization of B Cell and T Cell Epitopes for Subunit Vaccine Design of Salmonella typhi PgtE: A Molecular Dynamics Simulation Approach. J Comput Biol. 2019;26(2):105-116. doi:10.1089/cmb.2018.0010
    22. Tarang S, Kesherwani V, LaTendresse B, Lindgren L, Rocha-Sanchez SM, Weston MD. In silico Design of a Multivalent Vaccine Against Candida albicans. Sci Rep. 2020;10(1):1066. doi:10.1038/s41598-020-57906-x
    23. Ghosh P, Bhakta S, Bhattacharya M, Sharma AR, Sharma G, Lee SS, et al. A Novel Multi-Epitopic Peptide Vaccine Candidate Against Helicobacter pylori: In-Silico Identification, Design, Cloning and Validation Through Molecular Dynamics. Int J Pept Res Ther. 2021;1-18. doi:10.1007/s10989-020-10157-w
    24. Solanki V, Sharma S, Tiwari V. Subtractive Proteomics and Reverse Vaccinology Strategies for Designing a Multiepitope Vaccine Targeting Membrane Proteins of Klebsiella pneumoniae. Int J Pept Res Ther. doi:10.1007/s10989-021-10159-2
    25. Amani J, Salmanian AH, Rafati S, Mousavi SL. Immunogenic properties of chimeric protein from espA, eae and tir genes of Escherichia coli O157:H7. Vaccine. 2010;28(42):6923-6929. doi:10.1016/j.vaccine.2010.07.061
    26. Rosales-Mendoza S, Sandez-Robledo C, Banuelos-Hernandez B, Angulo C. Corn-based vaccines: current status and prospects. Planta. 2017;245(5):875-888. doi:10.1007/s00425-017-2680-1
    27. Jeshvaghani FS, Rahjerdi AK, Amani J, Rad I, Jafari M, Salmanian AH. Designing and structure evaluation of multi-epitope vaccine against ETEC and EHEC, an in silico approach. Protein Pept. Lett. 2016;23(1):33-42. doi: 10.2174/0929866522666151026122116
    28. Atapour A, Mokarram P, MostafaviPour Z, Hosseini SY, Ghasemi Y, Mohammadi S, et al. Designing a Fusion Protein Vaccine Against HCV: An In Silico Approach. Int J Pept Res Ther. 2018;25(3):861-872. doi:10.1007/s10989-018-9735-4
    29. Zouhir A, Jemli S, Omrani R, kthiri A, Jridi T, sebei K. In Silico Molecular Analysis and Docking of Potent Antimicrobial Peptides Against MurE Enzyme of Methicillin Resistant Staphylococcus Aureus. Int J Pept Res Ther. 2021. doi:10.1007/s10989-021-10165-4
    30. Hosseini SS, Aghaiypour Kolyani K, Rafiei Tabatabaei R, Goudarzi H, Akhavan Sepahi A, Salemi M. In silico prediction of B and T cell epitopes based on NDV fusion protein for vaccine development against Newcastle disease virus. Vet Res Forum. 2021;12(2):157-165. doi:10.30466/vrf.2019.98625.2351
    31. Kapczynski DR, Afonso CL, Miller PJ. Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol. 2013;41(3):447-453. doi:10.1016/j.dci.2013.04.012
    32. Mayahi V, Esmaelizad M, Ganjalikhany MR. Development of Avian Avulavirus 1 Epitope-Based Vaccine Pattern Based on Epitope Prediction and Molecular Docking Analysis: An Immunoinformatic Approach. Int J Pept Res Ther. 2019;26(3):1513-1522. doi:10.1007/s10989-019-09952-x
    33. Osman MM, ElAmin EE, Al-Nour MY, Alam SS, Adam RS, Ahmed AA, et al. In silico design of epitope based peptide vaccine against virulent strains of hn-newcastle disease virus (NDV) in poultry species. IJMCR. 2016;4. doi:10.13140/RG.2.1.1834.2009
    34. Silva APD, Gallardo RA. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines (Basel). 2020;8(4). doi:10.3390/vaccines8040637
    35. Dhanda SK, Pooja Vir, and Gajendra PS Raghava. Designing of interferon-gamma inducing MHC class-II binders. Biol. 2013;8, 30. doi:10.1186/1745-6150-8-30
    36. Bahrami AA, Payandeh Z, Khalili S, Zakeri A, Bandehpour M. Immunoinformatics: In Silico Approaches and Computational Design of a Multi-epitope, Immunogenic Protein. Int Rev Immunol. 2019;38(6):307-322. doi:10.1080/08830185.2019.1657426
    37. Cho SH, Kwon HJ, Kim TE, Kim JH, Yoo HS, Kim SJ. Variation of a newcastle disease virus hemagglutinin-neuraminidase linear epitope. J Clin Microbiol. 2008;46(4):1541-1544. doi:10.1128/JCM.00187-08
    38. Chambers P, Nesbit M, Yusoff K, Millar N, Samson A, Emmerson P. Location of a neutralizing epitope for the haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Gen Virol. 1988;69(8):2115-2122. doi:10.1099/0022-1317-69-8-2115
    39. Iorio RM, Syddall RJ, Sheehan JP, Bratt MA, Glickman RL, Riel AM. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition. Virol J 1991;65(9):4999-5006. doi:10.1128/jvi.65.9.4999-5006.1991
    40. Yusoff K, Nesbit M, McCartney H, Meulemans G, Alexander D, Collins M, et al. Location of neutralizing epitopes on the fusion protein of Newcastle disease virus strain Beaudette C. J Gen Virol. 1989;70(11):3105-3109. doi:10.1099/0022-1317-70-11-3105
    41. Toyoda T, Sakaguchi T, Hirota H, Gotoh B, Kuma K, Miyataj T, et al. Newcastle disease virus evolution: II. Lack of gene recombination in generating virulent and avirulent strains. Virol. 1989;169(2):273-282. doi:10.1016/0042-6822(89)90152-9