DGRanker: Cancer Driver Gene Detection in Human Transcriptional Regulatory Network

Document Type : Research Paper


1 Department of information technology, School of Systems and Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran

2 School of Systems and Industrial Engineering, Tarbiat Modares University (TMU), Chamran/Al-e-Ahmad Highways Intersection, Tehran, Iran

3 Department of Computer and Information Technology, Payame Noor University (PNU), P.O. Box, 19395-3697, Tehran, Iran


Background: Cancer is a group of diseases that have received much attention in biological research because of its high 
mortality rate and the lack of accurate identification of its root causes. In such studies, researchers usually try to identify 
cancer driver genes (CDGs) that start cancer in a cell. The majority of the methods that have ever been proposed for the 
identification of CDGs are based on gene expression data and the concept of mutation in genomic data. Recently, using 
networking techniques and the concept of influence maximization, some models have been proposed to identify these 
Objectives: We aimed to construct the cancer transcriptional regulatory network and identify cancer driver genes using a 
network science approach without the use of mutation and genomic data.
Materials and Methods: In this study, we will employ the social influence network theory to identify CDGs in the human 
gene regulatory network (GRN) that is based on the concept of influence and power of webpages. First, we will create 
GRN Networks using gene expression data and Existing nodes and edges. Next, we will implement the modified algorithm on GRN networks being studied by weighting the regulatory interaction edges using the influence spread concept. Nodes with the highest ratings will be selected as the CDGs.
Results: The results show our proposed method outperforms most of the other computational and network-based methods and show its superiority in identifying CDGs compared to many other methods. In addition, the proposed method can identify many CDGs that are overlooked by all previously published methods. 
Conclusions: Our study demonstrated that the Google’s PageRank algorithm can be utilized and modified as a network based method for identifying cancer driver gene in transcriptional regulatory network. Furthermore, the proposed method can be considered as a complementary method to the computational-based cancer driver gene identification tools.


Main Subjects

  1. References:

    1. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069-1075. doi: 10.38/nature07423.
    2. Mularoni L, Sabarinathan R, Deu-Pons J, Gonzalez-Perez A, López-Bigas N. OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol. 2016;17(1):1-13. doi: 10.1186/s13059-016-0994-0.
    3. Reimand J, Wagih O, Bader GD. The mutational landscape of phosphorylation signaling in cancer. Sci Rep. 2013;3(1):1-9. doi:10.1038/srep02651.
    4. Hou JP, Ma J. DawnRank: discovering personalized driver genes in cancer. Genome Med. 2014;6(7):1-16. doi: 10.1186/s13073-014-0056-8.
    5. Porta-Pardo E, Godzik A. e-Driver: a novel method to identify protein regions driving cancer. Bioinformatics. 2014;30(21):3109-3114. doi: 10.1093/bioinformatics/btu499.
    6. Youn A, Simon R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics. 2011;27(2):175-181. doi: 10.1093/bioinformatics/btq630.
    7. Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals cancer drivers. Nucleic Acids Res. 2012;40(21):e169-e. doi: 10.1093/nar/gks743.
    8. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. Oncodrive CLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013;29(18):2238-4224. doi: 10.1093/bioinformatics/btt395.
    9. Vandin F, Upfal E, Raphael BJ. De novo discovery of mutated driver pathways in cancer. Genome Res. 2012;22(2):375-385. doi:10.1101/gr.120477.111.
    10. Ciriello G, Cerami E, Sander C, Schultz N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 2012;22(2):398-406. doi:10.1101/gr.125567.111. .
    11. Arneson D, Bhattacharya A, Shu L, Mäkinen V-P, Yang X. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration. BMC genomics. 2016;17(1):1-9. doi: 10.1186/s12864-016-3057-8.
    12. Zhang J, Wu L-Y, Zhang X-S, Zhang S. Discovery of co-occurring driver pathways in cancer. BMC Bioinf. 2014;15(1):1-14. doi: 10.1186/471-2105-15-271.
    13. Bashashati A, Haffari G, Ding J, Ha G, Lui K, Rosner J, et al. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 2012;13(12):1-14. doi:10.1186/gb-2012-13-12-r124.
    14. Rahimi M, Teimourpour B, Marashi S-A. Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach. Comput Biol Med. 2019;114:103362. doi:10.1016/j.compbiomed.2019.
    15. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009;10(4):252-263. doi: 10.1038/nrg2538.
    16. Cataldi M, Di Caro L, Schifanella C, editors. Emerging topic detection on twitter based on temporal and social terms evaluation. KDD ‘10. 2010;4:1–10. doi:10.1145/1814245.1814249.
    17. Chen W, Wang Y, Yang S, editors. Efficient influence maximization in social networks. KDD ‘9; 2009.p.199-208. doi:10.1145/1557019.1557047.
    18. Prakash BA, Faloutsos C. Understanding and managing cascades on large graphs. VLDB Endowment. 2012;5(12):2024-2025. doi:10.14778/2367502.67.
    19. Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order to the web. Stanford InfoLab; 1999.
    20. Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems. 1998;30(1-7):107-117. doi: 10.1016/S0169-7552(98)00110-X.
    21. Liu Y, Gu Q, Hou JP, Han J, Ma J. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression. BMC Bioinf. 2014;15(1):1-11. doi: 10.1186/471-2105-15-37.
    22. Shang H, Liu Z-P. Prioritizing type 2 diabetes genes by weighted PageRank on bilayer heterogeneous networks. IEEE/ACM Trans. Comput Biol Bioinf. 2019;18(1):336-346. doi: 10.1109/TCBB.2019.2917190.
    23. Liu Z-P, Wu C, Miao H, Wu H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database. 2015;2015. doi: 10.1093/database/bav095.
    24. Akhavan-Safar M, Teimourpour B. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network. Biosystems. 2021;201:104326. doi: 10.1016/j.biosystems.2020.
    25. Akhavan-Safar M, Teimourpour B, Kargari M. GenHITS: A network science approach to driver gene detection in human regulatory network using gene’s influence evaluation. J Biomed Inf. 2021;114:103661. doi: 10.1016/j.jbi.2020.
    26. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307-315. doi:10.1093/bioinformatics/btg405.
    27. Chung I-F, Chen C-Y, Su S-C, Li C-Y, Wu K-J, Wang H-W, et al. DriverDBv2: a database for human cancer driver gene research. Nucleic Acids Res. 2016;44(D1):D975-D979. doi: 10.1093/nar/gkv314.
    28. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A census of human cancer genes. Nat Rev Cancer. 2004;4(3):177-183. doi:10.1038/nrc299.
    29. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf . 2011;12(1):1-8. doi:10.1186/471-2105-12-77.