Evaluation of the Biodistribution of Arginine, glycine, aspartic acid peptide-modified Nanoliposomes Containing Curcumin in Rats

Document Type : Research Paper


1 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.

2 Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran

3 2Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

4 Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

5 Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran

6 Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran

7 Yasuj University of Medical Sciences


Background: Liposomes, as a biological membrane, is successfully used for drug delivery, reduces toxicity in normal cells 
and improves bio-accessibility of the drug to the target cells. Curcumin, as a bioactive substance with pleiotropic biological activities, is an anti-inflammatory compound and has several anticancer effects in different cancers such as pancreatic and breast cancer. 
Objectives: This study was conducted to determine the bio-distribution of arginine-glycine-aspartic acid (RGD)-modified 
nanoliposomes containing curcumin in different tissues of rats. 
Materials and Methods: The amount of curcumin in each tissue was examined by HPLC analysis. The distribution of 
liposomal Hoechst in the rats was evaluated by using fluorescence spectrophotometry, live animal imaging analyses and 
histological methods. 
Results: HPLC analysis showed the mean of curcumin in the blood significantly increased in the liposomal curcumin 
modified with RGD compared to free curcumin. These results were confirmed by fluorescence measurement for RGD 
modified liposome containing Hoechst dye. There was negligible fluorescent intensity in the blood rats, which received 
Hoechst alone. Live animal imaging analysis showed the presence of fluorescent color in heart tissue for all groups. It was also detected in kidney tissue for liposomal Hoechst modified with RGD group. 
Conclusions: The present study demonstrated that RGD-modified nano-liposomes can significantly improve drug 
retention time in the blood of rats. 


Main Subjects

  1. References

    1. Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164:640-653. doi: 10.1016/j.ejmech.2019.01.007.
    2. Agrawal M, Ajazuddin A, Tripathi DK, Saraf W, Saraf S, Antimisiaris SG, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017;28;260:261-277. doi: 10.1016/j.jconrel.2017.05.019
    3. Abu Lila AS, Ishida T. Liposomal Delivery Systems: Design Optimization and Current Applications. Biol Pharm Bull. 2017;40(1):1-10. doi: 10.1248/bpb.b16-00624.
    4. Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids. 2014;177:8-18. doi: 10.1016/j.chemphyslip.2013.10.011.
    5. Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. Artif Cells Nanomed Biotechnol. 2017;45:1478-1489. doi: 10.1080/21691401.2017.1290647.
    6. Carita AC, Eloy JO, Chorilli M, Lee RJ, Leonardi GR. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.Curr Med Chem. 2018;13;25(5):606-635. doi: 10.2174/0929867324666171009120154.
    7. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug deliv. 2016;23:3319-3329. doi: 10.1080/10717544.2016.1177136
    8. Mahmoudi R, Hassandokht F, Ardakani MT, Karimi B, Roustazadeh A, Shabnam Tarvirdipour S, et al. Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells. J Biomater Appl. 2021;35(8):1005-1018. doi: 10.1177/0885328220976331.
    9. Song Z, Lin Y, Zhang X, Chan Feng C,  Lu Y,   Yong Gao Y, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine. 2017;12:1941-1958. doi: 10.2147/IJN.S125573
    10. Pan X, Lee RJ. Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opin Drug Deliv. 2004;1:7-17. doi: 10.1517/17425247.1.1.7
    11. Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci. 2019;1;128:8-17. doi: 10.1016/j.ejps.2018.11.023.
    12. Kotha RR, Luthria DL. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. 2019;13;24(16):2930. doi: 10.3390/molecules24162930
    13. Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients. 2019;5;11(10):2376. doi: 10.3390/nu11102376.
    14. Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H, ,  Fouani MH, Alipour  M,  Jafari Barmak  M, et al. RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl. 2021;35(7):743-753. doi: 10.1177/0885328220949367.
    15. Ren B, Luo S, Tian X, Zhichao Jiang Z, Guoying Zou G, Fei Xu F,  et al. Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling. Oncol Rep. 2018;40(2):895-901. doi: 10.3892/or.2018.6485.
    16. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195-218.doi:10.1208/s12248-012-9432-8.
    17. Adjei IM, Sharma B, Labhasetwar V.Nanoparticles: cellular uptake and cytotoxicity. Adv Exp Med Biol. 2014;811:73-91. doi: 10.1007/978-94-017-8739-0-5.
    18. Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F. Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide. Iran J Biotechnol. 2016;14(2):33-40. doi: 10.15171/ijb.1399.
    19. Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F, Esfahani Zadeh M,  Naraki  M, et al. Encapsulation of eptifibatide in RGD-modified nanoliposomes improves platelet aggregation inhibitory activity. J Thromb Thrombolysis. 2017;43(2):184-193. doi: 10.1007/s11239-016-1440-6.
    20. Bardania H, Shojaosadati SA, Kobarfard F, Morshedi D,  Aliakbar F, Taher Tahoori MT, et al. RGD-Modified Nano-Liposomes Encapsulated Eptifibatide with Proper Hemocompatibility and Cytotoxicity Effect. Iran J Biotechnol. 2019;20;17(2):e2008. doi: 10.21859/ijb.2008
    21. Detampel P, Witzigmann D, Krahenbuhl S, Huwyler J. Hepatocyte targeting using pegylated asialofetuin-conjugated liposomes.JDrugTarget.2014;7;22(3):232-241. doi:10.3109/1061186X.2013.860982
    22. Goodman M. Managing the side effects of chemotherapy. Semin Oncol Nurs. 1989;5(1):29-52. doi: 10.1016/0749-2081(89)90080-6.
    23. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16-20. doi.org/10.1021/nn900002m.
    24. Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. 2019;1;34(1). doi: 10.1515/dmpt-2018-0032.
    25. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi: 10.1016/j.addr.2012.09.037
    26. Han SM, Baek JS, Kim MS, Hwang SJ, Cho CW. Surface modification of paclitaxel-loaded liposomes using d-alpha-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells. Chem Phys Lipids.2018;213:39-47. doi: 10.1016/j.chemphyslip.2018.03.005
    27. Song Y, Li W, Meng S, Zhou W,  Su B,  Tang L, et al. Dual integrin alphavbeta 3 and NRP-1-Targeting Paramagnetic Liposome for Tumor Early Detection in Magnetic Resonance Imaging. Nanoscale Res Lett. 2018;27;13(1):380. doi: 10.1186/s11671-018-2797-6
    28. Zhang N, Li C, Zhou D, Ding C,  Jin Y, Tian Q, et al. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis.ActaBiomater.2018;1;70:227-236.doi:10.1016/j.actbio.2018.01.038
    29. Razi MA, Wakabayashi R, Goto M, Kamiya N.Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery.Langmuir. 2019;19;35(7):2610-2618. doi: 10.1021/acs.langmuir.8b02809.
    30. Yu Z, Li X, Duan J, Yang XD.Targeted Treatment of Colon Cancer with Aptamer-Guided Albumin Nanoparticles Loaded with Docetaxel. Int J Nanomedicine.2020;11;15:6737-6748. doi: 10.2147/IJN.S267177.
    31. Hasanpoor Z, Mostafaie A, Nikokar I, Hassan ZM.Curcumin-human serum albumin nanoparticles decorated with PDL1 binding peptide for targeting PDL1-expressing breast cancer cells.Int J Biol Macromol. 2020;15;159:137-153. doi: 10.1016/j.ijbiomac.2020.04.130.
    32. Gupta T, Singh J, Kaur S, Sandhu S, Singh G, Kaur IP.Enhancing Bioavailability and Stability of Curcumin Using Solid Lipid Nanoparticles (CLEN): A Covenant for Its Effectiveness. Front Bioeng Biotechnol. 2020;15;8:879. doi: 10.3389/fbioe.2020.00879.
    33. Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv. 2018;25(1):517-532. doi: 10.1080/10717544.2018.1435747.
    34. Jiang K, Shen M, Xu W. Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. Int J Nanomedicine. 2018;27;13:2561-2569. doi: 10.2147/IJN.S157746.
    35. Kocaadam B, Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;2;57(13):2889-2895.
    36. Devassy JG, Nwachukwu ID, Jones PJ. Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev. 2015;73(3):155-165. doi: 10.1093/nutrit/nuu064.
    37. Mirzaei H, Masoudifar A, Sahebkar A, Zare N,   Sadri Nahand  J,  Rashidi  B, et al. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol. 2018;233(4):3004-3015. doi: 10.1002/jcp.26055.
    38. Hosseini S, Chamani J, Hadipanah MR, Ebadpour  N, Hojjati AS, Mohammadzadeh MH, et al. Nano-curcumin’s suppression of breast cancer cells (MCF7) through the inhibition of cyclinD1 expression. Breast Cancer (Dove Med Press). 2019:13;11:137-142. doi: 10.2147/BCTT.S195800.
    39. Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, et al. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol. 2018;233(10):6785-6798. doi: 10.1002/jcp.26538.
    40. Li WJ, Lian YW, Guan QS, LiN, Liang WN, Liu WX, et al. Liver-targeted delivery of liposome-encapsulated curcumol using galactosylated-stearate. Exp Ther Med. 2018;16(2):925-930. doi: 10.3892/etm.2018.6210.
    41. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145-160. doi: 10.1038/nrd1632.
    42. Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Jabbari M.E, Linder M. Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm. 2014;30;461(1-2):519-528. doi: 10.1016/j.ijpharm.2013.12.007.