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Gene Expression Characteristics of Tumor and Adjacent Non-Tumor 
Tissues of Pancreatic Ductal Adenocarcinoma (PDAC) In-Silico

Background: One of the deadliest and most prevalent cancer is pancreatic ductal adenocarcinoma (PDAC). Microarray 
has become an important tool in the research of PDAC genes and target therapeutic drugs.
Objectives: This study intends to clarify the promising prognostic and biomarker targets in PDAC using GSE78229 and 
GSE62452 datasets, publicly accessible at the Gene Expression Omnibus database. 
Materials and Methods: Utilizing GEOquery, Bio base, gplots, and ggplot2 packages in the R program, this study detects 
428 differentially expressed genes that are further applied to build a co-expression network by the weighted correlation 
network analysis (WGCNA). The turquoise module presented a higher correlation with PDAC progression. 79 candidate 
genes were selected based on the co-expression and protein-protein interaction (PPI) networks. In addition, the functional 
enrichment analysis was studied.
Results: Five significant KEGG pathways linked to PDAC were detected, in which the endoplasmic reticulum protein 
processing pathway was remarked to be vital. The resulting 19 hub genes as HSPA4, PABPC1, HSP90B1, PPP1CC, 
USP9X, EIF2S3, MSN, RAB10, BMPR2, P4HB, UBC, B2M, SLC25A5, MMP7, SPTBN1, RALB, DNAJB1, CENPE, 
and PDIA6 were identified by the Network Analyst web tool founded on PPI network by the STRING. These were 
identified as the most connected hub proteins. The quantification of the expression of levels and survival probabilities were 
analyzed overall survival (OS) of the real hub genes and were investigated by Kaplan–Meier (KM) plotter through The 
Cancer Genome Atlas Program (TCGA) database.  
Conclusions: The protein-protein interactions and KEGG pathway enrichment by DAVID indicated that some pathways 
were involved in PDAC, such as “pathways in cancer (hsa05200)”, “protein processing in the endoplasmic reticulum 
(hsa04141)”, “antigen processing and presentation (hsa04612)”, “dopaminergic synapse (hsa04728)”, and “measles 
(hsa05162)”; in which these pathways, the “protein processing in endoplasmic reticulum (hsa04141)”, was further studied 
because of its closely relationship with PDAC. The rest of the hub genes reviewed throughout the study might be promising 
targets for diagnosing and treating PDAC and relevant diseases.
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1. Background
Pancreatic ductal adenocarcinoma (PDAC), one of the 
deadliest cancer types, generally has a five-year viability 
fraction of 3% because of diagnosis at a late grade (1). 
Even though there are advanced treatment procedures 
such as pancreatectomy, radiotherapy, adjuvant and 

neoadjuvant chemotherapies, and palliative care 
pancreatectomy remains the most effective treatment, 
particularly for the initial stage of pancreatic cancer 
(2, 3, 4). Therefore, an updated understanding of 
pancreatic cancer is fundamental, and a straightforward 
mechanism is essential for personalized and curable 
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therapies to improve patient survival.
The generation of countless gene expression profiles 
of pathological samples has been directed by the 
advancement of high throughput sequencing that is 
publicly reachable via the GEO database (5). Whereas 
only a small part of these datasets has been studied, the 
different facets of the machinery of pancreatic tumor 
fast growth and resilience to therapies should be on 
focus. The deposited datasets are re-analyzed and used 
to offer beneficial outcomes for further examination in-
silico. 
The protein expression changes in the progression and 
expansion of PDAC and associated diseases demand 
extensive research (6). Moreover, the relations among 
DEGs detected co-expression network construction, 
particularly protein-protein interaction (PPI) networks, 
should elucidate underlying signaling pathways. (7, 8). 
By investigating hub nodes globally and between 
tumor and healthy samples of the most significant co-
expression module of DEGs and forming PPI networks, 
this study aims to uncover the biological pathway and 
genetic mechanisms of PDAC and associated diseases 
growth.
The experimental studies (9, 10) have concentrated 
only on detecting the significant genes so far. Thereby, 
two GEO datasets are studied which contained paired 
samples of tumor and adjacent non-tumor samples. The 
analysis provided the detection of the DEGs by the co-
expression network analysis. GO and KEGG pathway 
enrichment investigation were subsequently studied to 
examine the biological process, cellular component, 
and molecular function of the pathways, genes, and 
proteins. Moreover, a PPI network was constructed, 
and the associated pathway was investigated to detect 
the hub genes of PDAC. 

2. Objectives
In this study, two GEO datasets were chosen, which 
included tumor and adjacent non-tumor tissues of 
the microarray expression datasets. The weighted 

correlation network analysis was utilized as an 
exploratory tool, while gene filtering approach was 
utilized to spot the clusters (modules) of highly 
correlated genes based on DEGs. GO and KEGG 
pathway enrichments was studied, and biological 
process, cellular component, and molecular function 
of the pathways were highlighted. The PPI network 
revealed the real hub genes could assist as promising 
targets for the therapies of PDAC. This study aims to 
contribute further understanding of the machinery of 
PDAC development and its subsequent core genes. 

3. Materials and Methods 

3.1. The Gene Expression Datasets
The expression datasets of mRNA of human pancreatic 
cancer were downloaded  from NCBI GEO database 
with the accession GSE78229 and GSE62452 (11, 
12). Table 1 illustrates a summary of the datasets. The 
datasets contain an entirety of expression of 33,297 
probes of 111 samples, i.e., 50 tumors and 61 adjacent 
normal tissues.

3.2. Gene Expression Data Analysis Codes
Analysis was performed in the R programming 
language that can be reached at GitHub repository. 
Before conducting the analyses, the datasets with the 
low quality and low number of reads were filtered out, 
while the remainder of expression set was converted to 
a base-2 logarithmic measure. The expression values 
were then normalized by taking the averages of the 
samples. 

3.3. Differentially Expressed Genes  
Prior to transformation of gene expression values to 
base-2 logarithmic scale, datasets were pulled out by 
utilizing GEOquery package in Bioconductor (13). 
The statistical significance threshold is fixed at p-value 
< 0.05 and |log2(fold cut-off) | > 5 to detect DEGs 
between each data set via t-test for further analysis. 

 Table 1. Summary of the PDAC data sets.

GEO data set Samples Expressed Probes 
GSE78229 50 PDAC tumor tissue 33,297 probes on Affymetrix Human Gene 1.0 ST Array

GSE62452 61 adjacent non-tumor tissue 33,297 probes on Affymetrix Human Gene 1.0 ST Array
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The study utilized gplots package using heatmap.2 
function to construct heatmaps of DEGs (14)

3.4. Weighted Co-Expression Network Construction
The differentially expressed genes with presented 
expression values were used to identify the scale-free 
gene modules of co-expression and highly correlated 
genes created by WGCNA. The soft threshold power 
β was set to 5, the lowest power based on the scale-
free topology to build a weighted gene network (15). 
In addition, the parameter blockSize assigned to 30 
and TOMType were not given. Lastly, the topological 
overlap matrix (TOM) was computed by adjacency 
transformation and chose the value (1-TOM) to the 
distance for detecting hierarchical clustering genes and 
modules.

3.5. GO and KEGG Enrichments of the Pathways
Prior to gene expression measurements of annotations 
for the DEGs in hub module, probe IDs were matched 
to the offi cial gene symbols utilizing Biomart package 
(16) in R program. Subsequently, GO annotations of 
biological processes, molecular functions, and cellular 
components via Database for Annotation, Visualization 
and Integrated Discovery 6.8 (DAVID 6.8) were studied 
(16). Each annotation type was retrieved utilizing 
DAVID and KEGG (17, 18). All annotated pathways 
were carefully reviewed and further partitioned 
according to the characteristics of their biological 
and molecular meanings. Bar plot of GO and KEGG 
pathways were created using ggplot function of ggplot2 
package (19).

3.6. The PPI Network
Network Analyst offers the study of the PPI networks 
for the DEGs in hub module and expression values, 
utilizing STRING Interactome (20). To verify the 
outcomes, DAVID is matched with Network Analyst 
enrichments performed with KEGG (21).

3.7. Survival Analysis
Survival analysis via Kaplan–Meier (KM) 
plotter patients from The Cancer Genome Atlas 
Program (TCGA) dataset (22) was conducted. 
The examination was performed using common 
hub genes counting on expression profiles values 
in PDAC datasets.

4. Results
4.1. Exploratory Data Analysis
Figure 1 shows combined microarray datasets to 
examine quality control via Uniform Manifold 
Approximation and Projection (UMAP), which is a 
dimension reduction method useful for visualizing 
clusters or groups of samples and relative proximities. 
The number of nearest neighbors used in the calculation 
is indicated in the plot (23). Figure 2A illustrates the 
boxplot of the non-normalized base-2 logarithmic 
transformation of the raw gene expression datasets 
with tumor tissue and adjacent normal tissue samples. 
The examination detected 207 up-regulated DEGs and 
221 down-regulated DEGs, which were shown with 
a volcano plot (Fig. 2B). The expression values were 
used to confer the tumor and normal tissues separation, 
and a heatmap was designed. (Fig. S1)

4.2. Weighted Co-Expression Network Construction 
and Detection of Signifi cant Modules
To provide a scale-independent network, a power of β = 5 
(unscaled R2 = 0.85) was chosen (Fig. 3A). Based on tumor 
and normal tissues of PDAC, by setting DEGs with similar 
expression types into modules utilizing mean linkage-
clustering method and fi ve modules were found (Fig. 3B). The 
study applied two methodologies to examine the connection 
among each module and DEGs in the PDAC. Module extracts 
of the turquoise module revealed a higher correlation with 
disease progression than other modules (Fig. 3C). 

Figure 1. The raw GSE62452 and GSE78229 microarray 
datasets subject to quality control to examine high-dimen-
sional structure of datasets using UMAP.
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Figure 2.  A) The boxplot explains the gene expression values of samples of the original datasets 
without normalization. B) Plots displaying the expression difference in PDAC tumor and normal 
tissues. Black illustrates no change (NO), red illustrates low-expressed (Down), and blue rep-
resents over-expressed (Up) DEGs, FC, fold change.

A) B)

Figure 3. A) Ascertainment of soft-thresholding power and the examination of the scale-free fi t index for several 
soft-thresholding powers. B) Dendrogram of the differentially expressed genes. The DEGs are clustered based 
on a dissimilarity measure (1- TOM) highly clustered in the turquoise module. C) Distribution of mean gene 
signifi cance and errors in the modules linked with the PDAC traits. D) Heatmap of the correlation between 
module eigengenes and the tumor and normal samples (traits) of the PDAC.
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In addition, the turquoise module was positively 
associated with tumor tissues but was negatively 
associated with adjacent normal tissues (blue shading) 
(Fig. 3D). Thus, this study distinguished the turquoise 
module of PDAC as the most connected to each trait 
(tumor vs. normal) based on these two methods.

4.3. GO Enrichment and KEGG Pathways
In Table 2, the top DEGs in turquoise module were 
ranked according to the gene counts and p-value < 0. 
05 criteria. The common hub DEGs mainly enriched 
were associated with GO:0000904~cell morphogenesis 
involved in differentiation GO:0007409~axonogenesis, 
GO:0016192~vesicle-mediated transport, GO:0061564~axon 
development, and GO:0000902~cell morphogenesis 
in the ‘biological process’ group (Fig. 4A). As for the 
‘molecular function’ group GO:0050839~cell adhesion 
molecule binding, GO:0032403~protein complex 
binding, GO:0097367~carbohydrate derivative binding, 
GO:0005543~phospholipid binding, and GO:0008289~lipid 
binding (Fig. 4B) were identifi ed. Furthermore, the ‘cellular 
component’ gene ontology enrichment analysis revealed 
pathways such as GO:0070062~extracellular exosome, 
GO:1903561~extracellular vesicle,  GO:0043230~extracellular 
organelle, GO:0044421~extracellular region part, and 
GO:0005912~adherens  junction (Fig. 4C).
KEGG pathway study results revealed which common 
hub genes in turquoise module were considerably 
enriched in has05200: pathways in cancer, hsa04141: 
protein processing in endoplasmic reticulum, hsa04612: 
antigen processing and presentation, hsa04728: 
dopaminergic synapse, and hsa05162: measles as shown 
in Figure 4D. Among these pathways, ER protein 
processing pathway might have a vital infl uence on 
multiple protein process.

4.4. The PPI Network and KEGG Enrichment Analysis
Figure 4E demonstrates the PPI network of the hub 
genes of the turquoise module in the PDAC tumor and 
adjacent non-tumor tissues. According to the STRING 
database, all the genes in the turquoise module of the 
449 nodes and 559 edges were represented by red to 
yellow color, relative to the degree of connectivity 
in the network of the weighted gene co-expression. 
Subsequently, the signifi cant proteins in the PPI network 
were selected as the mutual genes to be subject to KEGG 
enrichment analysis. The KEGG pathway analysis reveals 
involvement protein processing in endoplasmic reticulum, 

mRNA surveillance pathway, estrogen signaling pathway, 
measles, and cellular senescence. This confi rms the role of 
ER stress in protein processing pathway of the common 
hub genes. HSPA4, PABPC1, HSP90B1, PPP1CC, 
USP9X, EIF2S3, MSN, RAB10, BMPR2, P4HB, UBC, 
B2M, SLC25A5, MMP7, SPTBN1, RALB, DNAJB1, 
CENPE, and PDIA6 were identifi ed as the most connected 
hub proteins (Tables 2 and 3).

4.5. The Role of the Endoplasmic Reticulum Protein 
Processing Pathway
The turquoise module, in which 19 common network 
genes reveal the “ER protein processing” pathway 
through KEGG enrichment analysis, is strongly linked 
to pancreatic cancer and other related diseases. ER stress 
is a disparity within the protein-folding capacity of ER 
and its protein pack that results from the collection of 
crankling proteins (24, 25). It has been considered to 
be engaged in the Parkinson’s, Alzheimer’s, and other 
deformational diseases. These diseases are caused by  a 
few particular morbifi c unfolding proteins (26, 27). 
Primary hub genes investigation associated with 
ER protein processing pathway was performed, as 
presented in Figure 4E. The network is constructed 
based on specifi cally engaged hub genes with black 
circled nodes in ER protein processing pathway. The 
study hypothesized that by virtue of over-expression of 
ER-associated proteins, the entire ER protein processing 
pathway might be unsettled in PDAC. The key genes 
of ER protein processing pathway can be listed as 
HSPA4, HSP90B1, P4HB, and EIF2AK4.The most 
expressed HSP gene family performs a key position of 
the ER protein processing pathway. HSP90B1 would 
be a gene that is related with this pathway, folding 
and transforming molecular chaperones with key roles 
in organizing other proteins (28). Other common hub 
genes are listed as HSPA4 and P4HB in PDAC tumor 
and normal tissues. These fi ndings verify the vital duty 
of the ER protein processing pathway engaged in PDAC 
and associated diseases treatment, proposing updated 
molecular biomarkers to the essential drug agents.

4.6. Survival Analysis 
The datasets containing 50 PDAC tumor tissues and 61 
adjacent normal tissues were separately subjected to 
survival analysis in the TCGA database. To anticipate 
the prognostic values of the eight real hub genes, KM 
plotter was employed (Fig. 5A-G).
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Figure 4. The bar plot shows 30 top GO annotations regarding A) biological processes (BP), B) molecular function (MF), 
and C) cellular component (CC). They are represented by axes text color brown, purple, and red respectively. D) The top fi ve 
KEGG pathway enrichments of the turquoise module is shown. E) The gradual color change from red to the yellow node was 
comparable to the degree of connectivity in the weighted gene co-expression network; positive correlation in the red, and 
negative correlation in the yellow nodes. Black-circled nodes present the ER protein processing pathway associated genes. 
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Table 2.  Gene expression dataset retrieved with top signifi cant pathways GO annotations analysis of the turquoise module in PDAC

Category Term Count % Pvalue Genes
GO_BP_FAT GO:0000904~cell morphogenesis 

involved in differentiation
12 13.33 4.89E-05 RAB10, BMPR2, USP9X, KIF5B, 

SLITRK5, DNAJB1, CENPE, CTNNA2, 
MT3, ANTXR1, SPTBN1, CORO1C

GO_BP_FAT GO:0007409~axonogenesis 9 10 8.67E-05
RAB10, BMPR2, USP9X, KIF5B, SLITRK5, 
CENPE, CTNNA2, MT3, SPTBN1

GO_BP_FAT
GO:0016192~vesicle-mediated 
transport

16 17.78 1.34E-04

CDC42SE1, HSPA4, RALB, COG6, 
EIF2AK1, MSN, SNX31, HSP90B1, 
CORO1C, JCHAIN, RAB10, MYO1B, 
GOLPH3, KIF5B, B2M, SPTBN1

GO_BP_FAT GO:0061564~axon development 9 10 1.45E-04
RAB10, BMPR2, USP9X, KIF5B, SLITRK5, 
CENPE, CTNNA2, MT3, SPTBN1

GO_BP_FAT GO:0000902~cell morphogenesis 14 15.56 2.72E-04

CDC42SE1, BMPR2, USP9X, MSN, 
DNAJB1, CENPE, ANTXR1, MT3, 
CORO1C, RAB10, KIF5B, SLITRK5, 
CTNNA2, SPTBN1

GO_BP_FAT
GO:0048667~cell morphogenesis 
involved in neuron differentiation

9 10 3.03E-04
RAB10, BMPR2, USP9X, KIF5B, 
SLITRK5, CENPE, CTNNA2, MT3, 
SPTBN1

GO_BP_FAT GO:0008104~protein localization 20 22.22 4.20E-04

PDIA6, HSPA4, RALB, COG6, NCOA4, 
MSN, SNX31, MT3, UBAC2, HSP90B1, 
CORO1C, RAB10, GOLPH3, KIF5B, 
RAB18, SLC25A5, GLUL, PAM, SPTBN1, 
FBN1

GO_BP_FAT
GO:0031175~neuron projection 
development

11 12.22 4.69E-04
RAB10, BMPR2, USP9X, KIF5B, 
SLITRK5, DNAJB1, CENPE, CTNNA2, 
B2M, MT3, SPTBN1

GO_BP_FAT
GO:0032989~cellular component 
morphogenesis

14 15.56 5.02E-04

CDC42SE1, BMPR2, USP9X, MSN, 
DNAJB1, CENPE, ANTXR1, MT3, 
CORO1C, RAB10, KIF5B, SLITRK5, 
CTNNA2, SPTBN1

GO_BP_FAT GO:0007155~cell adhesion 16 17.78 5.45E-04 PDIA6, HSPA4, MSN, DNAJB1, ANTXR1, 
CORO1C, RAB10, MYO1B, GOLPH3, 
VCAN, EIF2S3, KIF5B, CTNNA2, B2M, 
SPTBN1, FBN1

GO_BP_FAT
GO:0000904~cell morphogenesis 
involved in differentiation

12 13.33 4.89E-05
RAB10, BMPR2, USP9X, KIF5B, 
SLITRK5, DNAJB1, CENPE, CTNNA2, 
MT3, ANTXR1, SPTBN1, CORO1C

GO_MF_FAT GO:0050839~cell adhesion molecule 
binding

10 11.11 2.36E-05 RAB10, HSPA4, MYO1B, EIF2S3, 
KIF5B, MSN, CTNNA2, P4HB, SPTBN1, 
FBN1

GO_MF_FAT GO:0032403~protein complex binding 12 13.33 4.59E-05 HSPA4, PDIA6, PPP1CC, MYO1B, PLS3, 
CTNNA2, P4HB, ANTXR1, SPTBN1, 
CORO1C, FBN1, JCHAIN

GO_MF_FAT GO:0097367~carbohydrate derivative 
binding

20 22.22 8.89E-05 HSPA4, RALB, BMPR2, MMP7, 
EIF2AK1, HSP90B1, JCHAIN, RAB10, 
MYO1B, SMCHD1, VCAN, EIF2S3, 
KIF5B, PDE3A, RAB18, YME1L1, 
GLUL, TRPM6, B2M, FBN1
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GO_MF_FAT GO:0005543~phospholipid binding 8 8.89 1.92E-04 HSPA4, GOLPH3, MYO1B, ANXA5, 
PON1, ANXA2P2, SNX31, SPTBN1

GO_MF_FAT GO:0008289~lipid binding 10 11.11 3.48E-04 HSPA4, GOLPH3, MYO1B, FABP7, 
ANXA5, PON1, ANXA2P2, SNX31, 
CD1B, SPTBN1

GO_MF_FAT GO:0098641~cadherin binding 
involved in cell-cell adhesion

7 7.78 4.50E-04 RAB10, HSPA4, MYO1B, EIF2S3, 
KIF5B, CTNNA2, SPTBN1

GO_MF_FAT GO:0098632~protein binding involved 
in cell-cell adhesion

7 7.78 5.48E-04 RAB10, HSPA4, MYO1B, EIF2S3, 
KIF5B, CTNNA2, SPTBN1

GO_MF_FAT GO:0098631~protein binding involved 
in cell adhesion

7 7.78 5.98E-04 RAB10, HSPA4, MYO1B, EIF2S3, 
KIF5B, CTNNA2, SPTBN1

GO_MF_FAT GO:0045296~cadherin binding 7 7.78 6.08E-04 RAB10, HSPA4, MYO1B, EIF2S3, 
KIF5B, CTNNA2, SPTBN1

GO_MF_FAT GO:0051015~actin filament binding 5 5.56 0.001071 MYO1B, PLS3, CTNNA2, ANTXR1, 
CORO1C

GO_CC_FAT GO:0070062~extracellular exosome 30 33.33 8.98E-08 C5ORF46, RALB, PON1, ANTXR1, 
N4BP2L2, HSP90B1, JCHAIN, GLUL, 
B2M, SPTBN1, PDIA6, HSPA4, PARP4, 
MMP7, ANXA5, MSN, DNAJB1, 
GNG12, RAB10, MYO1B, EIF2S3, 
SUB1, RAB18, SERINC1, P4HB, 
PABPC1, ANXA2P2, SLC25A5, PAM, 
FBN1

GO_CC_FAT GO:1903561~extracellular vesicle 30 33.33 1.01E-07 C5ORF46, RALB, PON1, ANTXR1, 
N4BP2L2, HSP90B1, JCHAIN, GLUL, 
B2M, SPTBN1, PDIA6, HSPA4, PARP4, 
MMP7, ANXA5, MSN, DNAJB1, 
GNG12, RAB10, MYO1B, EIF2S3, 
SUB1, RAB18, SERINC1, P4HB, 
PABPC1, ANXA2P2, SLC25A5, PAM, 
FBN1

GO_CC_FAT GO:0043230~extracellular organelle 30 33.33 1.01E-07 C5ORF46, RALB, PON1, ANTXR1, 
N4BP2L2, HSP90B1, JCHAIN, GLUL, 
B2M, SPTBN1, PDIA6, HSPA4, PARP4, 
MMP7, ANXA5, MSN, DNAJB1, 
GNG12, RAB10, MYO1B, EIF2S3, 
SUB1, RAB18, SERINC1, P4HB, 
PABPC1, ANXA2P2, SLC25A5, PAM, 
FBN1

GO_CC_FAT GO:0044421~extracellular region part 35 38.89 1.63E-07 C5ORF46, RALB, BMPR2, PON1, 
ANTXR1, N4BP2L2, HSP90B1, 
JCHAIN, GLUL, B2M, SPTBN1, 
PDIA6, HSPA4, CPA1, PARP4, MMP7, 
ANXA5, MSN, DNAJB1, CENPE, 
GNG12, MT3, RAB10, MYO1B, VCAN, 
EIF2S3, SUB1, RAB18, SERINC1, 
P4HB, PABPC1, ANXA2P2, SLC25A5, 
PAM, FBN1

GO_CC_FAT GO:0005912~adherens junction 15 16.67 3.22E-07 HSPA4, ANXA5, MSN, HSP90B1, 
CORO1C, RAB10, PPP1CC, MYO1B, 
EIF2S3, KIF5B, P4HB, PABPC1, 
CTNNA2, B2M, SPTBN1
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5. Discussion
The predominance of PDAC and he associated survival 
rates have decreased in the former decade (29). 
Therefore, accurate and immediate diagnoses of the 
PDAC and the improvement of paramount remedies 
are vital. Previous research identified actual hub 
genes in PDAC that were declared to be of diagnostic 
importance. (8). This study comprehensively analyzed 
the combination of GSE78229 and GSE62452 datasets 
from patients with PDAC of microarray gene expression 
profiles holding the expressions of 50 tumor and 61 
non-tumor tissues (Fig. 2 and Table 1). In this study, 
the DEGs in the datasets were subject to create a co-
expression network by WGCNA (15). After which, GO 
functional enrichments and KEGG pathway analyses 
were performed on the turquoise module, which was 

GO_CC_FAT GO:0070161~anchoring junction 15 16.67 4.32E-07 HSPA4, ANXA5, MSN, HSP90B1, 
CORO1C, RAB10, PPP1CC, MYO1B, 
EIF2S3, KIF5B, P4HB, PABPC1, 
CTNNA2, B2M, SPTBN1

GO_CC_FAT GO:0031988~membrane-bounded 
vesicle

32 35.56 1.70E-06 C5ORF46, RALB, PON1, ANTXR1, 
N4BP2L2, HSP90B1, JCHAIN, KIF5B, 
GLUL, B2M, SPTBN1, PDIA6, 
HSPA4, PARP4, MMP7, ANXA5, 
MSN, DNAJB1, GNG12, MT3, RAB10, 
MYO1B, EIF2S3, SUB1, RAB18, 
SERINC1, P4HB, PABPC1, ANXA2P2, 
SLC25A5, PAM, FBN1

GO_CC_FAT GO:0005576~extracellular region 35 38.89 1.35E-05 C5ORF46, RALB, BMPR2, PON1, 
ANTXR1, N4BP2L2, HSP90B1, 
JCHAIN, GLUL, B2M, SPTBN1, 
PDIA6, HSPA4, CPA1, PARP4, MMP7, 
ANXA5, MSN, DNAJB1, CENPE, 
GNG12, MT3, RAB10, MYO1B, VCAN, 
EIF2S3, SUB1, RAB18, SERINC1, 
P4HB, PABPC1, ANXA2P2, SLC25A5, 
PAM, FBN1

GO_CC_FAT GO:0005925~focal adhesion 10 11.11 1.94E-05 RAB10, HSPA4, PPP1CC, ANXA5, 
MSN, P4HB, PABPC1, B2M, HSP90B1, 
CORO1C

KEGG_PATHWAY hsa05200:Pathways in cancer 6 6.67 0.0168 RALB, NCOA4, DNAJB1, CTNNA2, 
GNG12, HSP90B1

KEGG_PATHWAY hsa04141:Protein processing in 
endoplasmic reticulum

4 4.44 0.0276 HSPA4, EIF2AK1, P4HB, HSP90B1

KEGG_PATHWAY hsa04612:Antigen processing and 
presentation

3 3.33 0.0353 HSPA4, PDIA6, B2M

KEGG_PATHWAY hsa04728:Dopaminergic synapse 3 3.33 0.0891 PPP1CC, KIF5B, GNG12

KEGG_PATHWAY hsa05162:Measles 3 3.33 0.0951 HSPA4, EIF2AK1, MSN

revealed as the most significant module (Tables 2, 3, 
and Fig. 3). KEGG pathway study resulted mostly in 
the turquoise module was entailed in protein processing 
in endoplasmic reticulum, mRNA surveillance 
pathway, estrogen signaling pathway, measles, and 
cellular senescence. (Fig. 4D and Table 2). The DEGs 
in turquoise module are related to other pathways 
such as cell morphogenesis involved in differentiation 
(30), vesicle-mediated transport (31), axon guidance 
development (32), and cell morphogenesis (30). These 
group pathways might be of importance in the ‘biological 
process’ (Fig. 4A). To obtain an in-depth understanding 
of these common hub genes, this study analyzed the 
constructed PPI network (Fig. 4E), which revealed 
eight real hub genes such as HSPA4, DNAJB1, PABBC1, 
P4HB, PDIA6, RAB10, RALB, EIF2S3, and CELPE. 
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These hub genes are strongly linked with progression 
of PDAC and they may serve as therapeutic targets. 
Moreover, mutations employed in ER protein processing 
pathway genes and several associated pathway genes 
contribute to the growth of the PDAC (Fig. 4E). 
Metabolic and functional changes in ribosomal and ER 
protein processing pathways are evident in pancreatic 
cancer (33, 34). In addition to their standard roles, ER 
protein processing pathway further rules metabolism 
characteristics of aggregation of misfolded proteins 
in the endoplasmic reticulum, which drives ER stress 
and then triggers the unfolded protein response (UPR) 
signaling pathway (35). Heat Shock Protein Family A 
(Hsp70) Member 4 (HSPA4) was detected as one of 
the core genes with the biggest degree of connectivity 
(Table 3). One study revealed that HSPA4 expression is 
associated with increased patient survival in PDAC (36)
DnaJ Heat Shock Protein Family (Hsp40) Member B1 
(DNAJB1) is a protein-coding gene that could serve 
as an adverse prognostic factor for overall survival 

and relapse-free survival (37). Overexpression of 
DNAJB1 is linked to progression and recurrence of 
cholangiocarcinoma (38). Furthermore, it is reported 
by Cui X, et al. that DNAJB1 was able to promote 
cancer cell proliferation in the lung cancer cell line 
A549 and suppress apoptosis through ubiquitin 
degradation of PDCD5 (39). Taken together, the 
weighted gene co-expression analysis results of two 
GEO microarray datasets of PDAC indicated that 
dopaminergic synapse (hsa94728) (40), antigen 
processing and presentation (hsa04612) (41), and 
protein processing in ER (hsa04141) (42) pathways 
participate in the onset and development of PDAC. 
This project applied survival study to fi lter real hub 
genes with a signifi cant Logrank of a p-value. A total 
of eight genes (HSPA4, DNAJB1, PABBC1, P4HB, 
PDIA6, RAB10, RALB, and EIF2S3) were especially 
promising, and they may be potential biomarkers for 
prognosis (Fig. 5A-G).

Figure 5. Survival study of the real hub genes in PDAC datasets. Effect of expression levels on PDAC patients of 
survival. A) HSPA4 (Logrank p = 0.0034), B) DNAJB1 (Logrank p = 0.012), C) PABBC1 (Logrank p = 0.025) D) 
P4HB (Logrank p = 0.093), E) PDIA6 (Logrank p = 0.034), F) RAB10 (Logrank p = 0.0027), G) RALB (Logrank p 
= 0.017), and H) EIF2S3 (Logrank p = 0.01). Red lines and blue lines represent high expression and low expression 
of the real hub genes, respectively.

A) B) C) D)

E) F) G) H)
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Table 3. The top 15 common hub genes of PPI network of the turquoise module in PDAC tumor and 
non-tumor tissues gene expression data.

Gene ID Genes Nodes Betweenness 
centrality

Expression Fold Cut-off

3312 HSPA4 103 38655.36 7.26105469 7.26

26986 PABPC1 76 30322.54 5.54081207 5.54

7184 HSP90B1 47 18422.09 6.67241036 6.67

5501 PPP1CC 45 26263.34 5.83112829 5.83

8239 USP9X 31 11968.88 4.62837378 4.62

1968 EIF2S3 24 7240.32 5.25950649 5.25

4478 MSN 21 18382.39 5.39104874 5.39

10890 RAB10 21 16158.94 3.86893387 3.86

659 BMPR2 19 8073 4.48815865 4.48

5034 P4HB 18 7982.73 6.27703351 6.27

7316 UBC 17 61998.78 0 6.89

567 B2M 15 6307 6.00173613 6.00

292 SLC25A5 15 5591.53 4.94497369 4.94

4316 MMP7 10 9309 5.35016667 5.35

6711 SPTBN1 10 3685.11 5.38178162 5.38

5899 RALB 10 3223.23

3337 DNAJB1 10 3750.13 3.24341789 3.78

1062 CENPE 9 3730 3.35601213 5.10

10130 PDIA6 9 4500 4.27824156 5.21

3.82931216                           3.82

6. Conclusion
An accurate and faster identification of PDAC and 
the advancement of strong particular remedies are 
of importance. This study identified 428 DEGs. 
Afterwards, the DEGs are subject to build a co-
expression network by WGCNA. KEGG pathway 
study of common hub genes in turquoise module was 
considerably enriched in hsa05200: pathways in cancer, 
hsa04141: protein processing in endoplasmic reticulum, 
hsa04612: antigen processing and presentation, 
hsa04728: dopaminergic synapse, and hsa05162: 
measles, in which the ER protein processing pathway 
was remarked to be important. Nineteen hub genes 
were identified via PPI network. A total of eight genes 
(HSPA4, DNAJB1, PABBC1, P4HB, PDIA6, RAB10, 
RALB, and EIF2S3) were confirmed through survival 
analysis, and they may be potential biomarkers for 

prognosis of the PDAC.

Abbreviations 
DEGs: Differentially Expressed Genes 
PDAC: Pancreatic Adenocarcinoma
WGCNA: The Weighted Correlation Network Analysis
DAVID: The Database for Annotation, Visualization 
and Integrated Discovery
KEGG: Kyoto Encyclopedia of Genes and Genomes
GEO: Gene Expression Omnibus
GO: Gene Ontology
ER: Endoplasmic Reticulum
PPI: Protein-protein Interaction
BP: Biological Process
MF: Molecular Function
CC: Cellular Component
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