Multi-function Plant Defensin, Antimicrobial and Heavy Metal Adsorbent Peptide

Document Type: Research Paper

Authors

1 Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran

2 Department of Fisheries and Environmental Science, Shahrekord University, Shahrekord, Iran

3 Department of Genetic, Shahrekord University, Shahrekord, Iran

4 Ecofibre Industries Operations and Ananda Hemp, Brisbane, Australia

Abstract

Background: Defensin peptide isolated from plants are often heterogeneous in length, sequence and structure, but they are mostly small, cationic and amphipathic. Plant defensins exhibit broad-spectrum antibacterial and antifungal activities against Gram-positive and Gram-negative bacteria, fungi and etc. Plant defensins also play an important role in innate immunity, such as heavy metal and some abiotic stresses tolerance.
Objectives: In this paper, in vitro broad-spectrum activities, antimicrobial and heavy metal absorption, of a recombinant plant defensin were studied.
Material and Methods: SDmod gene, a modified plant defensin gene, was cloned in pBISN1-IN (EU886197) plasmid, recombinant protein was produced by transient expression via Agroinfiltration method in common bean. The recombinant protein was tested for antibacterial activity against Gram-negative, Gram-positive bacteria and Fusarium sp. the effects of different treatments on heavy metal zinc absorption by this peptide were tested.
Results: We confirmed the antibacterial activities of this peptide against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus cereus) bacteria, and antifungal activities of this peptide against Fusarium spp. (Fusarium oxysporum and Fusarium solani). High metal absorption coefficient for this peptide was also observed.
Results: Out of six actinobacterial isolates, VITVAMB 1 possessed the most efficient RO-16 decolorization property. It decolorized 85.6% of RO-16 (250 mg L-1) within 24hrs. Isolate VITVAMB 1 was identified to be Nocardiopsis sp. Maximum dye decolorization occurred at pH 8, temperature 35oC, 3% salt concentration and a dye concentration of 50 mg L-1.
Conclusions: Results suggesting that modified defensin peptide facilitates a broader range of defense activities. dedefensins are an important part of the innate immune system in eukaryotes. These molecules have multidimensional properties that making them promising agents for therapeutic drugs.

Keywords

Main Subjects


1.           Carvalho Ade O, Gomes VM. Plant defensins--prospects for the biological functions and biotechnological properties. Peptides. 2009;30(5):1007-1020. doi: 10.1016/j.peptides.2009.01.018 pmid: 19428780

2.           Gadd GM, de Rome L. Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol. 1988;29(6):610-617. doi: 10.1007/bf00260993

3.           Sotchenkov DV, Goldenkova IV, Mirakholi N, Volkova LV. [Modification of the sunflower defensin SD2 gene sequence and its expression in bacterial and yeast cells]. Genetika. 2005;41(11):1453-1461. doi: 10.1007/s11177-005-0219-1 pmid: 16358712

4.           Colilla FJ, Rocher A, Mendez E. gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett. 1990;270(1-2):191-194. doi: 10.1016/0014-5793(90)81265-p pmid: 2226781

5.           Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007;270(1):1-11. doi: 10.1111/j.1574-6968.2007.00683.x pmid: 17371298

6.           Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71(1):1-20. doi: 10.1016/s0168-1605(01)00560-8 pmid: 11764886

7.           Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW, et al. Antimicrobial Peptides from Plants. Crit Rev Plant Sci. 2010;16(3):297-323. doi: 10.1080/07352689709701952

8.           Kraszewska J, Beckett MC, James TC, Bond U. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria. Appl Environ Microbiol. 2016;82(14):4288-4298. doi: 10.1128/AEM.00558-16 pmid: 27208129

9.           Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001;1(3):156-164. doi: 10.1016/S1473-3099(01)00092-5 pmid: 11871492

10.        Broekaert WF, Terras FR, Cammue BP, Osborn RW. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995;108(4):1353-1358. doi: 10.1104/pp.108.4.1353 pmid: 7659744

11.        Miller GL. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem. 1959;31(3):426-428. doi: 10.1021/ac60147a030

12.        Lee MW, Yang Y. Transient expression assay by agroinfiltration of leaves. Methods Mol Biol. 2006;323:225-229. doi: 10.1385/1-59745-003-0:225 pmid: 16739580

13.        Ullah H, Khan MF, Jan SU, Hashmat F. Depletion of GSH in human blood plasma and cytosolic fraction during cadmium toxicity is temperature and pH dependent. Pak J Pharm Sci. 2016;29(1):89-95. pmid: 26826820

14.        Mahnam K, Foruzandeh S, Mirakhorli N, Saffar B. Experimental and theoretical studies of cadmium ions absorption by a new reduced recombinant defensin. J Biomol Struct Dyn. 2018;36(8):2004-2014. doi: 10.1080/07391102.2017.1340851 pmid: 28617190

15.        Riener CK, Kada G, Gruber HJ. Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4'-dithiodipyridine. Anal Bioanal Chem. 2002;373(4-5):266-276. doi: 10.1007/s00216-002-1347-2 pmid: 12110978

16.        Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. 2011;2011:250349. doi: 10.1155/2011/250349 pmid: 21403856

17.        Han R, Li H, Li Y, Zhang J, Xiao H, Shi J. Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater. 2006;137(3):1569-1576. doi: 10.1016/j.jhazmat.2006.04.045 pmid: 16737773

18.        Nurnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev. 2004;198:249-266. doi: 10.1111/j.0105-2896.2004.0119.x pmid: 15199967

19.        Thomma BP, Cammue BP, Thevissen K. Plant defensins. Planta. 2002;216(2):193-202. doi: 10.1007/s00425-002-0902-6 pmid: 12447532

20.        Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, et al. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 1995;368(2):257-262. doi: 10.1016/0014-5793(95)00666-w pmid: 7628617

21.        Segura A, Moreno M, Molina A, Garcia-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 1998;435(2-3):159-162. doi: 10.1016/s0014-5793(98)01060-6 pmid: 9762899

22.        Nizet V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol. 2006;8(1):11-26. pmid: 16450883

23.        Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389-395. doi: 10.1038/415389a pmid: 11807545

24.        Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, et al. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta. 2006;223(3):392-406. doi: 10.1007/s00425-005-0069-z pmid: 16240149

25.        Marcos JF, Munoz A, Perez-Paya E, Misra S, Lopez-Garcia B. Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol. 2008;46:273-301. doi: 10.1146/annurev.phyto.121307.094843 pmid: 18439131

26.        Badosa E, Moiset G, Montesinos L, Talleda M, Bardaji E, Feliu L, et al. Derivatives of the antimicrobial peptide BP100 for expression in plant systems. PLoS One. 2013;8(12):e85515. doi: 10.1371/journal.pone.0085515 pmid: 24376887

27.        García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuéla P. Plant defense peptides. Biopolymers. 1998;47(6):479-491. doi: 10.1002/(sici)1097-0282(1998)47:6<479::aid-bip6>3.0.co;2-k

28.        Runping J, Honglin Z, Yan S, Xingguo C, Zhide H. Human serum albumen enhanced resonance light scattering of dyes. Talanta. 2004;64(2):355-360. doi: 10.1016/j.talanta.2004.02.030 pmid: 18969611

29.        Mirouze M, Sels J, Richard O, Czernic P, Loubet S, Jacquier A, et al. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J. 2006;47(3):329-342. doi: 10.1111/j.1365-313X.2006.02788.x pmid: 16792695

30.        Valls M, de Lorenzo V, Gonzalez-Duarte R, Atrian S. Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. J Inorg Biochem. 2000;79(1-4):219-223. doi: 10.1016/s0162-0134(99)00170-1 pmid: 10830869