Identified Hybrid tRNA Structure Genes in Archaeal Genome

Document Type: Research Paper


1 Department of Mathematics, Raidighi College, Raidighi, W.B., India

2 Department of Mathematics, Uluberia College, Uluberia, Howrah, W.B, India

3 Department of Physics, Jadavpur University, Kolkata, W.B, India

4 Department of Physics, Dhruba Chand Halder College, Dakshin Barasat, W.B., India


Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separated genes encoding tRNA halves to generate suppressive variants of missing tRNAs.
Objectives: The exploration of tRNA genes from a genome with varying hypotheses, among all three domain of life (eukaryotes, bacteria and archaea), has been rapidly identified in different ways in the field of bioinformatics. Like eukaryotic tRNA genes, it has been established that two separated regions of the coding sequence of a tRNA gene are essential and sufficient for promotion of transcription. Our objective is to find out the two essential regions in the genome sequence which comprises two halves of the hidden tRNAs.
Material and Methods: Considering the existence of split tRNA genes widely separated throughout the genome, we developed our tRNA search algorithm to predict such separated tRNA genes by searching both a conserved terminal 5'- and 3'-motif of tRNA in agreement with the split hypothesis on the basis of cloverleaf prediction and precise insilico determination of bulge-helix-bulge secondary structure at the splice sites.
Results: By a comprehensive search for all kinds of missing tRNA genes, we have constructed hybrid tRNA genes containing one essential region from tDNA (XYZ) and the other from tDNA (ABC), both from same species in the archaea. We have also found, this type of hybrid tRNA genes are identified in the different species of the archaea (XYZ: ASN, ARG and MET; ABC: ASP,SER, ARG and PRO).These hybrid split tRNA share a common structural motif called bulge-helix-bulge (BHB) a more relaxed bulge-helix loop (BHL), at the leader exon boundary and suggested to be evolutionary interrelated.
Conclusions: Analysis of the complete genome sequences of Metallosphaera sedula DSM 5348, Desulfurococcus kamchatkensis 1221n and Ignicoccus hospitalis KIN4/I in archaea by our algorithm revealed that a number of hybrid tRNAs are constructed from different tDNAs . Asymmetric combination of 5’ and 3’ tRNA halves may have generated the diversity of tRNA molecules. Our study of hybrid tRNA genes will provide a new molecular basis for upcoming tRNA studies.


Main Subjects

1.           Cavicchioli R. General Characteristics and Important Model Organisms. In: Cavicchioli R, editor. Archaea: Molecular and Cellular Biology. Washington, DC, USA: ASM Press; 2007.
2.           Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea. Nat Rev Microbiol. 2005;3(6):479-488. doi: 10.1038/nrmicro1159 pmid: 15931166
3.           Maizels N, Weiner AM. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci U S A. 1994;91(15):6729-6734. doi: 10.1073/pnas.91.15.6729 pmid: 8041690
4.           Weiner AM, Maizels N. The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication, and clues regarding the origin of protein synthesis. Biol Bull. 1999;196(3):327-328; discussion 329-330. doi: 10.2307/1542962 pmid: 10390830
5.           Di Giulio M. The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor (LUCA). J Theor Biol. 2006;240(3):343-352. doi: 10.1016/j.jtbi.2005.09.023 pmid: 16289209
6.           Ertem G. Montmorillonite, oligonucleotides, RNA and origin of life. Orig Life Evol Biosph. 2004;34(6):549-570. doi: 10.1023/B:ORIG.0000043130.49790.a7 pmid: 15570708
7.           Di Giulio M. The non-monophyletic origin of the tRNA molecule. J Theor Biol. 1999;197(3):403-414. doi: 10.1006/jtbi.1998.0882 pmid: 10089150
8.           Tanaka T, Kikuchi Y. Origin of the cloverleaf shape of transfer RNA-the double-hairpin model: implication for the role of tRNA intron and the long extra loop. Viva Origino. 2001;29(134):134-142.
9.           Marck C, Grosjean H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA. 2002;8(10):1189-1232. doi: 10.1017/s1355838202022021 pmid: 12403461
10.        Sugahara J, Yachie N, Sekine Y, Soma A, Matsui M, Tomita M, et al. SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level. In Silico Biol. 2006;6(5):411-418. pmid: 17274770
11.        Sugahara J, Yachie N, Arakawa K, Tomita M. In silico screening of archaeal tRNA-encoding genes having multiple introns with bulge-helix-bulge splicing motifs. RNA. 2007;13(5):671-681. doi: 10.1261/rna.309507 pmid: 17369313
12.        Randau L, Munch R, Hohn MJ, Jahn D, Soll D. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature. 2005;433(7025):537-541. doi: 10.1038/nature03233 pmid: 15690044
13.        Fujishima K, Sugahara J, Kikuta K, Hirano R, Sato A, Tomita M, et al. Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. Proc Natl Acad Sci U S A. 2009;106(8):2683-2687. doi: 10.1073/pnas.0808246106 pmid: 19190180
14.        Randau L, Calvin K, Hall M, Yuan J, Podar M, Li H, et al. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proc Natl Acad Sci U S A. 2005;102(50):17934-17939. doi: 10.1073/pnas.0509197102 pmid: 16330750
15.        Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea. Proc Natl Acad Sci U S A. 2005;102(43):15418-15422. doi: 10.1073/pnas.0506750102 pmid: 16221764
16.        Fujishima K, Sugahara J, Miller CS, Baker BJ, Di Giulio M, Takesue K, et al. A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity. Nucleic Acids Res. 2011;39(22):9695-9704. doi: 10.1093/nar/gkr692 pmid: 21880595
17.        Widmann J, Di Giulio M, Yarus M, Knight R. tRNA creation by hairpin duplication. J Mol Evol. 2005;61(4):524-530. doi: 10.1007/s00239-004-0315-1 pmid: 16155749
18.        Sun FJ, Caetano-Anolles G. The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol. 2008;66(1):21-35. doi: 10.1007/s00239-007-9050-8 pmid: 18058157
19.        Sakonju S, Bogenhagen DF, Brown DD. A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region. Cell. 1980;19(1):13-25. doi: 10.1016/0092-8674(80)90384-0 pmid: 7357599
20.        Bogenhagen DF, Sakonju S, Brown DD. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region. Cell. 1980;19(1):27-35. doi: 10.1016/0092-8674(80)90385-2 pmid: 7357604
21.        Fowlkes DM, Shenk T. Transcriptional control regions of the adenovirus VAI RNA gene. Cell. 1980;22(2 Pt 2):405-413. doi: 10.1016/0092-8674(80)90351-7 pmid: 7448868
22.        Guilfoyle R, Weinmann R. Control region for adenovirus VA RNA transcription. Proc Natl Acad Sci U S A. 1981;78(6):3378-3382. doi: 10.1073/pnas.78.6.3378 pmid: 6943546
23.        Hofstetter H, Kressman A, Birnstiel ML. A split promoter for a eucaryotic tRNA gene. Cell. 1981;24(2):573-585. doi: 10.1016/0092-8674(81)90348-2 pmid: 7237560
24.        Ciliberto G, Castagnoli L, Melton DA, Cortese R. Promoter of a eukaryotic tRNAPro gene is composed of three noncontiguous regions. Proc Natl Acad Sci U S A. 1982;79(4):1195-1199. doi: 10.1073/pnas.79.4.1195 pmid: 6951168
25.        Sprinzl M, Gauss DH. Compilation of tRNA sequences. Nucleic Acids Res. 1984;12 Suppl(suppl):r1-57. doi: 10.1093/nar/12.suppl.r1 pmid: 6728685
26.        Murray J. Mathematical Biology: An Introduction. Berlin: Springer 2002.
27.        Cross MC, Hohenberg PC. Pattern formation outside of equilibrium. Rev Mod Phys. 1993;65(3):851-1112. doi: 10.1103/RevModPhys.65.851
28.        el-Mabrouk N, Lisacek F. Very fast identification of RNA motifs in genomic DNA. Application to tRNA search in the yeast genome. J Mol Biol. 1996;264(1):46-55. doi: 10.1006/jmbi.1996.0622 pmid: 8950266
29.        Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955-964. doi: 10.1093/nar/25.5.955 pmid: 9023104
30.        Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11-16. doi: 10.1093/nar/gkh152 pmid: 14704338
31.        Sugahara J, Fujishima K, Morita K, Tomita M, Kanai A. Disrupted tRNA gene diversity and possible evolutionary scenarios. J Mol Evol. 2009;69(5):497-504. doi: 10.1007/s00239-009-9294-6 pmid: 19826747
32.        Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 2009;37(Database issue):D93-97. doi: 10.1093/nar/gkn787 pmid: 18984615
33.        Das S, Mitra S, Sahoo S, Chakrabarti J. Novel hybrid encodes both continuous and split tRNA genes? J Biomol Struct Dyn. 2011;28(5):827-831. doi: 10.1080/07391102.2011.10508610 pmid: 21294593
34.        Altman S. Ribonuclease P. Philos Trans R Soc Lond B Biol Sci. 2011;366(1580):2936-2941. doi: 10.1098/rstb.2011.0142 pmid: 21930585
35.        Spath B, Canino G, Marchfelder A. tRNase Z: the end is not in sight. Cell Mol Life Sci. 2007;64(18):2404-2412. doi: 10.1007/s00018-007-7160-5 pmid: 17599240
36.        Minagawa A, Ishii R, Takaku H, Yokoyama S, Nashimoto M. The flexible arm of tRNase Z is not essential for pre-tRNA binding but affects cleavage site selection. J Mol Biol. 2008;381(2):289-299. doi: 10.1016/j.jmb.2008.05.016 pmid: 18602113
37.        Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34(8):e63. doi: 10.1093/nar/gkl151 pmid: 16682442