Cell Suspension Culture of Plumbago europaea L. Towards Production of Plumbagin

Document Type: Research Paper

Authors

1 Faculty of Natural Science, University of Tabriz, Tabriz, Iran

2 Zanjan Applied Pharmacology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran

3 Pharmacognosy Department, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran

4 Zanjan Pharmaceutical Biotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran

Abstract

Background: Plumbagin is as an important bioactive secondary metabolite found in the roots of Plumbago spp. The only one species, Plumbago europaea L., grows wild in Iran. The therapeutic use of plumbagin is limited due to its insufficient supply from the natural sources as the plants grow slowly and take several years to produce quality roots.
Objectives: To develop an efficient protocol for the establishment of callus and cell suspension cultures of P. europaea and to evaluate production of plumbagin in callus and cell suspension cultures of P. europaea for the first time.
Material and Methods: Stems and leaves explants were cultured on agar solidified (7% w/v) MS media, supplemented with different combination of 2, 4-D and Kin or 6-Benzylaminopurin (BA) for callus induction. The rapid growing calli were cultured in liquid Murashige and Skoog (MS) media in agitated condition for establishing cell suspension cultures of P. europaea. Moreover, the effects of light and dark conditions on the cell growth, cell viability and plumbagin production in cell suspension cultures of P. europaea were assessed.
Results: Friable calli were successfully induced using stem segments of P. europaea in semisolid MS medium supplemented with 1 mg.L-1 2, 4-Dichlorophenoxy acetic acid (2, 4-D) and 0.5 mg.L-1of kinetin (Kin). Optimal cell growth was obtained when the cells were grown in MS liquid media supplemented with 1 mg.L-1 2, 4-D and 0.5 mg.L-1 kinetin with an initial cell density of ~3×105 cellsper ml incubated in the dark at 25 ± 1 °C. Growth curve revealed that the maximum cell growth rate (14.83×105 cellsper ml) achieved on the day 18 and the highest plumbagin content (0.9 mg.g-1 Dry Cell Weight (DCW)) in the cells was obtained at the late exponential phase under dark condition which determined by High Performance Liquid Chromatography (HPLC) technique. Based on the obtained results, cell viability remained around 82.73% during the 18 days of cell culture in darkness. These suspension cultures showed continuous and stable production of plumbagin.
Conclusions: Our study suggests that cell suspension cultures of P. europaea represent an effective system for biosynthesis and production of plumbagin as a valuable bioactive compound.

Keywords

Main Subjects


1.           Ghahreman A. Flore de l'Iran. Tehran: University of Tehran; 1993.

2.           Komaraiah P, Ramakrishna SV, Reddanna P, Kavi Kishor PB. Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J Biotechnol. 2003;101(2):181-187. doi: 10.1023/A:1010545630018. pmid: 12568747

3.           Navaei MN, Mirza M, Dini M. Chemical composition of the essential oil ofPlumbago europaea L. roots from Iran. Flavour Fragr J. 2005;20(2):213-214. doi: 10.1002/ffj.1384

4.           Kitanov GM, Pashankov PP. Quantitative investigation on the dynamics of plumbagin in Plumbago europaea L. roots and herb by HPLC. Pharmazie. 1994;49(6):35-60.

5.           Nair S, Nair RR, Srinivas P, Srinivas G, Pillai MR. Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol Carcinog. 2008;47(1):22-33. doi: 10.1002/mc.20359 pmid: 17562542

6.           Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH. Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol. 2005;57(1):111-116. doi: 10.1211/0022357055119 pmid: 15638999

7.           Tan M, Liu Y, Luo X, Chen Z, Liang H. Antioxidant Activities of Plumbagin and Its Cu (II) Complex. Bioinorg Chem Appl. 2011;2011:898726. doi: 10.1155/2011/898726 pmid: 22046145

8.           Kubo I, Uchida M, Klocke JA. An insect ecdysis inhibitor from the African medicinal plant, Plumbago capensis (Plumbaginaceae); a naturally occurring chitin synthetase inhibitor. Agricult Biol Chem. 1983;47(4):911-913. doi: 10.1271/bbb1961.47.911.

9.           Mathew N, Paily KP, Abidha, Vanamail P, Kalyanasundaram M, Balaraman K. Macrofilaricidal activity of the plantPlumbago indica/rosea in vitro. Drug Dev Res 2002;56(1):33-39. doi: 10.1002/ddr.10056

10.        Itoigawa M, Takeya K, Furukawa H. Cardiotonic action of plumbagin on guinea-pig papillary muscle. Planta Med. 1991;57(4):317-319. doi: 10.1055/s-2006-960106 pmid: 1775570

11.        Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J. Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med. 1998;64(3):237-241. doi: 10.1055/s-2006-957417 pmid: 9581522

12.        Kuo PL, Hsu YL, Cho CY. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther. 2006;5(12):3209-3221. doi: 10.1158/1535-7163.MCT-06-0478 pmid: 17172425

13.        Thasni KA, Rakesh S, Rojini G, Ratheeshkumar T, Srinivas G, Priya S. Estrogen-dependent cell signaling and apoptosis in BRCA1-blocked BG1 ovarian cancer cells in response to plumbagin and other chemotherapeutic agents. Ann Oncol. 2008;19(4):696-705. doi: 10.1093/annonc/mdm557 pmid: 18187487

14.        Nair SV, Baranwal G, Chatterjee M, Sachu A, Vasudevan AK, Bose C, et al. Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. Int J Med Microbiol. 2016;306(4):237-248. doi: 10.1016/j.ijmm.2016.05. 004 pmid: 27212459

15.        Sandeep G, Dheeraj A, Sharma NK, Jhade D, Bharti A. Effect of plumbagin free alcohol extract of Plumbago zeylanica Linn. root on reproductive system of female Wistar rats. Asian Pac J Trop Med. 2011;4(12):978-984. doi: 10.1016/S1995-7645(11)60230-7 pmid: 22118035

16.        Kurian A, Sankar MA. Medicinal plants: New India Publishing; 2007.

17.        Cao YY, Yu J, Liu TT, Yang KX, Yang LY, Chen Q, et al. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis. 2018;9(2):17. doi: 10.1038/s41419-017-0068-6 pmid: 29339720

18.        Li YC, He SM, He ZX, Li M, Yang Y, Pang JX, et al. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. Cancer Lett. 2014;344(2):239-259. doi: 10.1016/j.canlet.2013.11 .001 pmid: 24280585

19.        Sandur SK, Ichikawa H, Sethi G, Ahn KS, Aggarwal BB. Plumbagin (5-Hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-κB activation and NF-κB-regulated gene products through modulation of p65 and IκBa kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem. 2006;281:17023-17033.

20.        Durand R, Zenk MH. Biosynthesis of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) via the acetate pathway in higher plants. Tetrahedron Lett. 1971;12(32):3009-3012. doi: 10.1016/s0040-4039(01)97077-7

21.        Wurm G, Gurka H-J. Untersuchungen an 1,4-Naphthochinonen, 13. Mitt. Neue Synthesen für Plumbagin und Isoplumbagin. Arch Pharm. 1986;319(2):190-191. doi: 10.1002/ardp.19863190219

22.        Ichihara A, Ubukata M, Sakamura S. Synthesis of plumbagin by the retro-Diels-Alder reaction. Agricult Biol Chem. 1980;44(1):211-213. doi: 10.1271/bbb1961.44.211.

23.        Fieser LF, Dunn JT. Synthesis of plumbagin. J Am Chem Soc. 1936;58(4):572-575.

24.        Satheeshkumar K, Seeni S. Production of plumbagin (5-hydroxy 2-methyl 1: 4 naphthoquinone) in callus and cell suspension cultures of Plumbago indica Linn. Indian J Biotechnol. 2002;1:305-308.

25.        Vázquez-Flotaand FA, Luca VD. Jasmonate modulates development- and light-regulated alkaloid biosynthesis in catharanthus roseus fn1 fn1Dedicated to Dr. Neil Towers on the occasion of his seventy-fifth birthday. Phytochemistry. 1998;49(2):395-402. doi: 10.1016/s0031-9422(98)00176-9

26.        Halliday KJ, Fankhauser C. Phytochrome-hormonal signalling networks. New Phytol. 2003;157(3):449-463. doi: 10.1046/j.1469-8137.2003.00689.x

27.        Paek KY, Chakrabarty D, Hahn EJ. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult. 2005;81(3):287-300. doi: 10.1007/s11240-004-6648-z

28.        Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x.

29.        Oropeza M, Marcano AK, De García E. Proteins related with embryogenic potential in callus and cell suspensions of sugarcane (Saccharum sp.). In Vitro Cell Dev Biol Plant. 2001;37(2):211-216. doi: 10.1007/11627-001-0037-7

30.        Rodrı́guez-Monroy M, Galindo E. Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in a stirred tank. Enzyme Microbial Technol. 1999;24(10):687-693. doi: 10.1016/s0141-0229(99)00002-2

31.        Muhammad HM, Saour KY, Naqishbandi AM. Quantitative and qualitative analysis of Plumbagin in the leaf and root of Plumbago europaea growing naturally in Kurdistan by HPLC. Iraqi J Pharm Sci. 2017;18(Suppl.):54-59.

32.        Stafford A, Warren G. Plant cell and tissue culture. Buckingham, UK: Open University Press; 1991.

33.        Mukherjee S, Ghosh B, Jha S. Establishment of forskolin yielding transformed cell suspension cultures of Coleus forskohlii as controlled by different factors. J Biotechnol. 2000;76(1):73-81. doi: 10.1016/s0168-1656(99)00181-9 pmid: 10784298

34.        Kumar S, Kanwar JK. Plant regeneration from cell suspensions in Gerbera jamesonii Bolus. J Fruit Ornam Plant Res. 2007;15(2):157. doi: 10.1.1.558.3702.

35.        Mathur S, Shekhawat GS. Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiol Plant. 2012;35(3):931-939. doi: 10.1007/s11738-012-1136-2

36.        Ipekci Z, Gozukirmizi N. Indirect somatic embryogenesis and plant regeneration from leaf and internode explants of Paulownia elongata. Plant Cell Tissue Organ Cult. 2004;79(3):341-345. doi: 10.1007/s11240-003-4632-7.

37.        Mohamad Zuldin NN, Said IM, Mohd Noor N, Zainal Z, Jin Kiat C, Ismail I. Induction and analysis of the alkaloid mitragynine content of a Mitragyna speciosa suspension culture system upon elicitation and precursor feeding. ScientificWorldJournal. 2013;2013:209434. doi: 10.1155/2013/209434 pmid: 24065873

38.        Negahdary M, Omidi S, Eghbali-Zarch A, Mousavi SA, Mohseni G. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomed Res. 2015;26:794-799.

39.        Cheng H, Yu LJ, Hu QY, Chen SC, Sun YP. Establishment of callus and cell suspension cultures of Corydalis saxicola Bunting, a rare medicinal plant. Z Naturforsch C. 2006;61(3-4):251-256. doi: 10.1515/znc-2006-3-416 pmid: 16729585

40.        Wai-Leng L, Lai-Keng C. Establishment of Orthosiphon stamineus cell suspension culture for cell growth. Plant Cell Tissue Organ Cult. 2004;78(2):101-106. doi: 10.1023/B:TICU.0000022533.83592.37

41.        Khanpour-Ardestani N, Sharifi M, Behmanesh M. Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production. Cytotechnology. 2015;67(3):475-485. doi: 10.1007/s10616-014-9705-4 pmid: 25344876

42.        Rostampour S, Sohi H, Dehestani A. In vitro regeneration of Persian poppy (Papaver bracteatum). Biologia. 2010;65(4):647-652. doi: 10.2478/s11756-010-0079-6

43.        Mirzaee H, Sharafi A, Hashemi Sohi H. In vitro regeneration and transient expression of recombinant sesquiterpene cyclase (SQC) in Artemisia annua L. South Afr J Botan. 2016;104:225-231. doi: 10.1016/j.sajb.2015.10.005

44.        Shoja AM, Hassanpouraghdam Mb, Khosrowshahli M, Movafeghi A. Callogenesis capability and calli somaclonal variation of costmary (Tanacetum balsamita L.). Romanian Biotechnol Lett. 2010;15(2):5120-5124.

45.        Stals H, Inze D. When plant cells decide to divide.
Trends Plant Sci. 2001;6(8):359-364. doi: 10.1016/s1360-1385(01)02016-7 pmid: 11495789

46.        Silveira V, Iochevet Segal Floh E, Handro W, Pedro Guerra M. Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tissue Organ Cult. 2004;76(1):53-60. doi: 10.1023/a:1025847515435

47.        Machakova I, Zazimalova E. Plant Propagation by Tissue Culture. Netherlands: Springer; 2008.

48.        Karadi R, Kavatagimath S, Gaviraj E, Sastry D, Chandrashekhara S, Rajarajeshwari N. Evaluation of Plumbago indica callus for its plumbagin content and antimicrobial activity. J Cell Tissue Res. 2007;7(2):1131.

49.        Lisowska K, Wysokinska H. In vitro propagation of Catalpa ovata G. Don. Plant Cell Tissue Organ Cult. 2000;60(3):171-176. doi: 10.1023/1006461520438

50.        Qui JA, Castro-Concha LA, García-Sosa K, Peña-Rodríguez LM, Miranda-Ham ML. Differential effects of phytotoxic metabolites from Alternaria tagetica on Tagetes erecta cell cultures. J Gen Plant Pathol. 2009;75(5):331-339. doi: 10.1007/s10327-009-0184-y

51.        Bais HP, Walker TS, McGrew JJ, Vivanco JM. Factors affecting growth of cell suspension cultures of Hypericum perforatum L.(St. John's wort) and production of hypericin. In Vitro Cell Dev Biol Plant. 2002;38(1):58-65. doi: 10.10792FIVP2001253

52.        Tabata M. The Mechanism of Shikonin Biosynthesis in Lithospermum Cell Cultures. Plant Tissue Cult Lett. 1996;13(2):117-125. doi: 10.5511/plantbiotechnology1984.13.117

53.        Yazaki K, Matsuoka H, Shimomura K, Bechthold A, Sato F. A novel dark-inducible protein, LeDI-2, and its involvement in root-specific secondary metabolism in Lithospermum erythrorhizon. Plant Physiol. 2001;125(4):1831-1841. doi: 10.1104/pp.125.4.1831 pmid: 11299363

54.        Arias JP, Zapata K, Rojano B, Arias M. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana. J Photochem Photobiol B. 2016;163:87-91. doi: 10.1016/j.jphotobiol.2016.08.0 14 pmid: 27541569

55.        Hook ILI. Naphthoquinone contents of in vitro cultured plants and cell suspensions of Dionaea muscipula and Drosera species. Plant Cell Tissue Organ Cult. 2001;67(3):281-285. doi: 10.1023/a:1012708819212

56.        Nahálka J, Blanárik P, Gemeiner P, Matúsǒvá E, Partlová I. Production of plumbagin by cell suspension cultures of Drosophyllum lusitanicum Link. J Biotechnol. 1996;49(1-3):153-161. doi: 10.1016/0168-1656(96)01537-4.

57.        Panichayupakaranant P, Tewtrakul S. Plumbagin production by root cultures of Plumbago rosea. Ejbiotechnology. 2002;5(3):11-12. doi: 10.2225/vol5-issue3-fulltext-4.