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Background: The complexity of the fermentation processes is mainly due to the complex nature of the biological systems which 
follow the life in a non-linear manner. Joined performance of artificial neural network (ANN) and genetic algorithm (GA) in 
finding optimal solutions in experimentation has found to be superior compared to the statistical methods. Range of applications 
of β-cyclodextrin (β-CD) as an enzymatic derivative of starch is diverse, where the complex performance of cyclodextrin 
glucanotransferase (CGTase) as the involved enzyme is not well recognized.
Objectives: The aim of the present work was to use ANN systems with different training algorithms and defined architectures 
joined with GA, in order to optimize β-CD production considering temperature of the reaction mixture, substrate concentration, 
and the inoculum’s pH as the input variables.
Materials and Methods: Commercially Neural Power, version 2.5 (CPC-X Software, 2004) was used for the numerical analysis 
according to the specifications provided in the software. β-CD concentration was determined spectrophotometrically according to 
phenolphthalein discoloration technique, described in the literature.
Results: Randomly obtaining the experimental data for β-CD production in a fermentation process, could get explainable order 
using the ANN system coupled with GA. Changes of the β-CD as the function of each of the three selected input variables, were best 
quantified with use of the ANN system joined with the GA. The performance of the IBP learning algorithm was highly favorable 
(10300 epoch’s number within 5 second, with the lowest RMSE value) while the sensitivity analysis of the results which was carried 
out according to the weight method, were indicative of the importance of input variables as follows: substrate concentration < 
temperature < inoculum’s pH. For instance, small changes in the system’s pH are associated with the large variation in the β-CD 
production as has been described by the suggested model.
Conclusions: Production of β-CD (enzymatic derivative of starch) by B. licheniformis was satisfactorily described based on 
multivariate data analysis application of the ANN system and the experimental data were optimized by considering ANN plus the 
GA where the IBP was used as the training method and with use of three neurons as the constructed variables in the hidden layer 
of the test network.
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Implication for health policy / practice / research / medical education:
In this work, I²-Cyclodextrin production by Bacillus licheniformis was modeled using the artifi•cial neural network (ANN) system. Effects of the reaction 
conditions such as temperature, substrate concentration of the reaction medium and inoculum characteristics in terms of pH were studied by means 
of various networks
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terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work 
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1. Background
Cyclodextrins (CDs) are cyclic oligosaccharides which 

contain six, seven, eight or more glucopyranose units 
and are known as α-CD, β-CD, and γ-CD, respectively. They 
are produced during degradation of starch by cyclodex-
trin glucanotransferases (CGTase) (EC 2.4.1.19) which is 
commercially available or can be produced by some mi-
croorganisms especially diverse strains of Bacillus such as 
Bacillus circulans (1). Bacillus macerans, Bacillus firmus (2) 
and Bacillus licheniformis (3-5). The capability of cyclodex-
trins (CDs) to form inclusion complexes and modify the 
physical and chemical properties of the guest molecules, 

makes them extremely attractive for vast industrial ap-
plications such as food, chemical, pharmaceutical, and 
textile, as well as in biotechnology and agriculture. The 
complexity of the fermentation processes has been well 
documented in the literature and this is mainly due to 
the complex nature of biological systems which the man-
ner they follow in the life processes is highly non-linear. 
With considering the other natural attitudes of living ob-
jects such as lack of preciseness of information (or fuzzy 
data), the need for deep recognition of the challenging 
matters and use of optimization methods in this regard, 
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became clearly evident (6). These handling methods 
based on mathematical modeling, which have been used 
traditionally in different types of biological processes, 
are single variable optimization, factorial and fractional 
factorial design of experiment, and response surface 
methodology (7). Experimental behavior of a process of 
the interest could thus be adequately predicted using an 
appropriate mathematical model. It is possible to obtain 
optimal cell growth and metabolite formation by varying 
the model parameters, according to the details given by a 
particular statistical design, instead of being extensively 
involved in experimentation. There are numerous advan-
tages of developing experimental optimization meth-
ods for existing process with use of knowledge based 
procedure, and the management of information can be 
efficiently proceeded in this manner. Availability of ex-
perimental data and knowing the underlying theory in 
a particular subject are the two key elements in deciding 
whether or not to use the ANN system. These types of ar-
tificially managed information systems (the NN system) 
work best in areas with unclear theory but when one has 
accessibility to the relevant data (8).

The evolutionary method based on the natural selec-
tion of the best individual in a population is the con-
cept followed in genetic algorithm (GA) computational 
program. In developing optimization method based 
on ANN system, it is highly desirable to couple neural 
network (NN) to the genetic algorithm (GA). The necessi-
tousness of this coupling is to follow the four main steps 
in GA program: 1) randomly generating a population of 
the individual experiments, 2) evaluating each of them 
by assigning a specific fitness function, 3) selecting the 
individuals with the higher assigned fitness value, and 
4) by hybridizing the selected individuals, the comple-
tion of the sorting process is achieved. Treating the new 
population as before and the sorting in GA program is 
continued until appearance of the system’s satisfaction 
criteria (9, 10).

Growth of microorganism and its ability in producing 
of a particular metabolite proceed through the unstruc-
tured kinetics, in which the systems follow the saturation 
type of enzymatic mechanism. The usual practice in situ-
ations with unclear theory, is to record the cell responses 
to changing environment in terms of the substrate con-
centration, temperature and pH of the test system (in vi-
tro studies). Mechanistic approach in solving these types 
of problems and handling the highly complex enzymes 
such as cyclodextrin glucanotransferase (CGTase), with 
unknown underlying mechanism, can be a real barrier in 
experimentation to find optimal positions of the chosen 
inputs relative to the output(s). Use of ANN joined with 
GA has been highly recommended in these situations for 
decreasing the extent of these types of problems. Thus 
predictive ability of the test system (ANN plus GA) is read-
ily achievable.

2. Objectives
The aim of the present work was to describe an opti-

mized model for production of β-CD by B. licheniformis 
using ANN system joined with the GA. Temperature of 
the reaction mixture, changes in maltodextrin concen-
trations as the reaction substrate, and the inoculum’s 
pH have been considered as the input variables and the 
dependency of β-CD production on these variables was 
quantified in terms of the amount of β-CD produced in 
these fermentation processes.

The focusing point in ANN system was to examine dif-
ferent training algorithms namely, incremental back 
propagation (IBP), batch back propagation (BBP), quick 
propagation (QP), genetic algorithms (GA), and Leven-
berg-Marquardt (LM). The results of this section, in which 
IBP and BBP were the chosen algorithms, was taken as the 
basis of the training with considering different numbers 
of the constructed neurons in the hidden layer (2 to 10 
neurons). The changes in the IBP with varying the num-
ber of neurons were less than those of the BBP training al-
gorithm (comparisons of R2 values). Thereafter, the ANN 
systems with IBP and BBP training algorithm both were 
examined to evaluate the system's responses in optimiza-
tion section in which GA, particle swarm optimization 
(PSO), and rotation inherit optimization (RIO) were the 
methods of the choice. Artificial neural network with IBP 
as the training algorithm coupled with GA was found to 
be more capable in fitting of the experimental data (bet-
ter predictive ability for ANN system ‘having IBP training 
algorithm’ joined with GA).

3. Materials and Methods

3.1. Materials, Microorganism, Cultivation Condi-
tions and Quantification of the Metabolite Con-
centration (β-CD)

All chemicals used in the present study were analytical 
grade and purchased from the local suppliers (malto-
dextrin and β-cyclodextrin ‘Sigma’ and the other chemi-
cals ‘Merck’). A freeze dried culture of Bacillus lichenifor-
mis (PTCC 1320) was purchased from the Persian Type 
Culture Collection, Iranian Research Organization for 
Science and Technology, Tehran, Iran. The culture trans-
fer was followed according to the directions provided 
by the supplier. For inoculum preparation, one loopfull 
of the biomass from the agar slant was transferred into 
250 mL Erlenmeyer flask contained 50 mL of the main 
medium which consisted of the following ingredients 
(L-1): 10 g soluble starch, 5 g peptone, 5 g yeast extract, 1 
g K2HPO4, 0.2 g MgSO4.7H2O. The sodium carbonate com-
pound concentration of 5 w/v % solution was used in dif-
ferent volume ratios for the adjustment of the pH of the 
medium. The addition of this solution to the main me-
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dium was done separately and after autoclaving of the 
test solution. The main medium’s pH was adjusted to 
8. The culture was incubated using a rotary shaker at 37 
°C and at 150 rpm for 24 hours. Initially for the enzyme 
production, a 5 v/v % of the test inoculum (prepared as 
described above) was transferred into a 250 mL conical 
flask containing the main medium at the different pH 
(8, 9 and 10), the test cultures were incubated at 37 °C for 
48 hours using a shaker incubator (150 rpm). The grown 
culture was used as the inoculum for examining effect 
of inoculums’ pH on the production of β-CD. Thereafter 
the culture solution containing the enzyme of the inter-
est solution was added to solutions of the maltodextrin 
as the test substrate. The three different initial concen-
trations of the substrate (1, 5 and 10 w/v %) were used in 
the present study. The production of β-CD was followed 
at different temperatures (37, 50, and 60 °C). Each pro-

duction assay was carried out for 10 days. The reaction 
medium consisted of required amount of maltodextrin 
dissolved in 50 mM Tris–HCl buffer (pH = 8), and 5 mM 
CaCl2, the volume of the solution was 50 mL in a coni-
cal flask of 250 mL. This solution was inoculated with 
the test bacterium solution (containing CGTase) at the 
ratio of 1:1 (v/v). The medium prepared as described was 
incubated in a shaker incubator (120 rpm). Amount of 
β-CD was determined at the end of the experiment us-
ing spectrophotometer for recording the color changes 
at 550 nm based on complexation made between β-CD 
and phenolphthalein, the details of procedure are given 
elsewhere (11).

 Table 1 shows the data of β-CD production obtained 
experimentally, and partitioned through training and 
testing data subsets which were used for the training of 
the ANN system. 

Table 1. Experimental Data of Training and Testing of Artificial Neural Network

Temperature (oC) Substrate Concentration (w/v %) Inoculum's pH β-CD Production (mM)

Training Data

60 1 10 0.168

60 10 10 0.266

37 10 10 0.822

60 1 8 0.503

50 1 8 0.750

50 10 8 1.007

37 1 8 0.579

60 1 9 1.455

50 5 10 1.106

60 5 9 1.603

37 1 9 1.021

37 5 9 1.119

50 10 9 1.020

60 10 9 1.833

37 5 8 0.799

50 1 9 0.710

50 10 10 1.420

37 5 10 0.562

37 10 8 0.455

60 5 8 0.712

Testing Data

60 5 10 0.176

37 1 10 0.493

50 5 8 0.912

37 10 9 1.208

50 5 9 0.947

60 10 8 0.854

50 1 10 0.690
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3.2. ANN linked to GA
The software package of Neural Power version 2.5 (CPC-

X software, 2004) was used in the present study. The mul-
tilayer normal feed forward neural network was used to 
characterize production of β-CD from maltodextrin by B. 
licheniformis. The suggested ANN consisted of three lay-
ers, where the input layer comprised of three neurons 
(substrate concentration, temperature, and inoculum’s 
pH), three in the hidden layer, and one in the output layer 
of the model (amount of β-CD produced in the fermenta-
tion process). Once the ANN was generated, it was trained 
to accurately model the test system of the interest. The 
ANN was trained by different learning algorithms, IBP, 
BBP, QP, GA, and LM. The structure of the suggested ANN 
used for the present study is shown in Figure 1. The trans-
fer functions of hidden and output layers were hyperbol-
ic tangent (Tanh). The training was continued until the 
network root mean squared error (RMSE) reached to the 
lowest value while the coefficient of determination (R 2 ) 

became close to one. Other parameters for the ANN were 
chosen according to Table 2. 

Input Layer Output Layer

ß-CD production

Woutput

Whidden
pH

s

T

Hidden Layer

Bias Bias

Figure 1. Structural Organization of the Neural Network Used for Estima-
tion of β-CD Production by B. licheniformis.

Table 2. The Neural Network Characteristics Used to Evaluate the Training Algorithm

Training algorithm Learning rate Momentum

BBP 0.8 0.8 a

IBP 0.8 0.8 a

QP 0.8 0.8 a

LM 0.1 0.4

GA 0.15 a 0.8 a

a the default values of the software

The normalization of the data was performed at the first 
stage of the data fitting: Equation 1 (Figure 2)

Figure 2. Equation 1

where the Xs show the values of input or output param-
eters, as needed and θ is the normalized form of the rel-
evant data.

The expressions bellow were used for RMSE and R2 values 
determination: Equation 2 (Figure 3), Equation 3 (Figure 4)

∑

 Figure 3. Equation 2

∑

Figure 4. Equation 3

Where Y is the average Y over the n samples, and Y i 
exp 

and Y i 
pre are the ith experimental and predicted value. 

The process details in linking the ANN with GA are shown 
in Figure 5 where β-CD production was optimized by 
comparing ANN linked with either of the three algo-
rithms, listed in the Neural Power software, namely GA, 
particle swarm optimization (PSO), and rotation inherit 
optimization (RIO). 

4. Results

4.1. Artificial Neural network Analysis of β-CD Pro-
duction
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For minimization of the learning error during the 
neural network training it is necessary to iteratively 

update the network weights. Different learning algo-
rithms 

 The theory is
known?

Yes

No

Modeling of (-3CD production ¡n terms of 3 input parameters
(substrate concentration, temperature, and pH of the system)

Using non-statistical approaches such as ANN systems

Choosing an ANN system using one hidden layer
with 3 nodes, transfer function of (tanh) for hidden

and output layer

Determination of kinetic model and the
kinetic constants using statistical 

approaches

Applying different training
aIgorithm

selecting the best training algorithm ¡n terms of
RMSE arid R2 vaIues  for the test and train data

n-CD production optimization
through linking ANN system with:

ANN system (with IBP training
method) linked with GA was best to

descibe the experimental data

ANN system using IBP training algorithm coupled
with GA has the best result

Examining the number of neurons ¡n the
hidden layer based on the R2 values

QP

GA PSO PIO

Selected algorithm: IBP

IBP

IBP
method

BBP
method

BBP LM GA

Figure 5. Algorithm of the Program Followed in the Present Study

namely IBP, BBP, QP, GA, and LM were used in this 
work for training multilayer normal feed forward for 

obtaining best result of the β-CD production from 

maltodextrin substrate. Figure 6 shows the results of 



Sanjari S et al.

Iran J Biotech. 2013;11(4)228

ANN performance on the basis of R 2 values obtained for 
the different training algorithms used in the present 
study. It is also notable to see the results presented in 
Table 3 where the decreasing order of the RMSE character 
is as follows: LM > BBP > IBP. Successive training cycles 

(epochs) are adjusted according to the learning rule 
and the error correction learning rule is based on the 
recording the difference between the ANN solution at 
any cycle of the training and the corresponding correct 
answer (8). 

Table 3. ANN Performance Parameters During Training

Training Function Iterations Time Elapsed (s) RMSE

BBP 45750 10 0.086

IBP 10300 5 0.058

QP 76750 42 0.095

LM 11250 9 0.093

GA 26150 28 0.1039

Modification of connections' weights on this basis thus 
can be used to gradually reduce the overall network er-
ror. According to Table 3, the IBP and BBP were the select-
ed training algorithms and this was based on their low 
values of RMSE as compared with that of the LM. Selecting 
the training method on the basis of the RMSE value is the 
approach which has been used by the other researchers 
(12), although the performance of LM in many studies re-
ported in the literature, was better mainly in terms of the 
completion time of the training (13). 

Performance of feed forward error back propagation is 
based on finding error as a function of ANN weights with 
use of gradient descent. The iteration in back propaga-

tion (BP) thus proceeds to two steps: forward activation 
in producing a solution, and the completed error at the 
output is propagated backward through the hidden layer 
to reduce the error by modifying the weights at the input 
layer.

The convergence rate and complexity of a model is 
highly depended on the type of transfer function used, 
Table 4 presents some transfer functions commonly used 
in the ANN systems. By performing the trial an error pro-
cess, it is possible to find the transfer function with the 
best performance. In the present study transfer functions 
for the hidden and output layer both were hyperbolic 
tangent (Tanh). 

Table 4. Some Transfer Functions Commonly Used in the ANN Systems

Function Name Mathematical Formula

Hyperbolic Tangent

ax
axxf

exp1
exp1  

Sigmoid

ax
xf

exp1
1  

Gaussian 2exp axxf  
Linear axxf  
Threshold linear

10
11
00

xax
x
x

xf  

Bipolar linear

11
11

11

xax
x
x

xf  
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The key element for obtaining an appropriate accuracy 
of the suggested model in ANN system is to find the op-
timal number of neurons in the hidden layer. Too few 
neurons in the hidden layer limit the modeling ability 
of the ANN system while excessive number of neurons 
result over-fitting and decreases the predictability of the 
system. The optimal number of neurons in hidden layer 
is usually determined through trial and error process 
and in the present study the optimum number of neuron 
was chosen to three on the basis of the R 2 values. Table 
5 shows the dependency of performance quality of the 
ANN system on the neuron numbers in the hidden layer. 

Performance of the BBP and IBP methods were compa-
rable while, variation in the IBP performance in response 
to changes of the neuron number in the hidden layer was 
considerably lower than BBP (Table 5). 

Figure 6 and Figure 7 are the result of assessing the per-
formance of the trained ANN systems through training 
and testing and analysis of the error prediction. On the 
basis of selecting the best training method (Figure 6), the 
selection was finalized according to the testing stage of 
the ANN system. Figure 7 shows the correlation between 
the experimental values for the β-CD production and the 
values predicted by the ANN system. 

Table 5. R2 Values of the ANN Models With Respect to Training and Testing Data Obtained According to IBP and BBP Training Algo-
rithms

BBP

Model R 2 Value (Train Data) R 2 Value (Test Data)

3-2-1 0.9472 0.9736

3-3-1 0.9896 0.9916

3-4-1 0.9982 0.9877

3-5-1 0.6272 0.4722

3-6-1 0.8556 0.2803

3-7-1 0.8264 0.6090

3-8-1 0.8264 0.6147

3-9-1 0.9981 0.7899

3-10-1 1.0000 0.9506

IBP

Model R 2 Value (Train Data) R 2 Value (Test Data)

3-2-1 0.9312 0.9194

3-3-1 0.9956 0.9894

3-4-1 0.9953 0.9541

3-5-1 0.9961 0.9795

3-6-1 0.9999 0.8699

3-7-1 0.9988 0.9796

3-8-1 0.9999 0.9063

3-9-1 0.9994 0.9326

3-10-1 0.9999 0.8133
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Figure 6. Comparison of the R2 Values for Training Section in Various 
Training Algorithms.
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The R 2 values with the normalized data were 0.989 
and 0.992 when IBP and BBP respectively, were used as 
the training method. The success of the neural network 
modeling, even though the number of data points is rela-
tively small, may be partially attributed to the statistical 
experimental design procedure employed during the 
experimental work. The well-stretched distribution of 
the data in the entire experimental region may help to 
obtain a good model even with restricted number of the 
data points.

4.2. Optimization of β-CD Production
The maximization of the β-CD metabolite, with consid-

ering the experimental data, was best described using 
IBP in combination with GA, where the other two opti-

mization methods offered by the NeuralPower software 
were PSO and RIO. Results of the optimization study are 
shown in Table 6. ANN linked with GA was selected and 
gave the best quality of the ANN performance. In each of 
these three cases the default values of the Neural Power 
software were used to handle each of the three cases. 
The model validation was carried out by running the GA 
several times with use of different randomly generated 
populations, where, as a result of successive runs, only 
slight variation in the value of β-CD production was ob-
served. 

4.3. Sensitivity Analysis
In a study, checking the responsiveness of the sug-

gested model to change in any model parameter(s) has

Table 6. Optimum Conditions for β-CD Production by Different Optimization Methods

Input Parameter IBP BBp Experimental Optimum of β-CD Production

GA PSO RIO GA PSO RIO

Temperature (°C) 60 59.97 60 60 59.94 60 60

Substrate Concentration (w/v %) 10 10 10 10 10 10 10

Inoculum's pH 8.9 8.78 8.78 8.66 8.67 8.66 9

β-CD Production (mM) 1.84 1.84 1.84 1.87 1.84 1.87 1.833

pH

S 3.697

43.22

53.08
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pu
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Figure 8. Result of Sensitivity Analysis in Quantitatively Defining the Ef-
fects of the Input Variables (Substrate Concentration, System’s Tempera-
ture and pH) on the Output Parameter (Amount of Produced β-CD) (Im-
portance of Input Parameters on the β-CD Production)

been termed sensitivity analysis. The result of this 
test indicates the extent of the change i. e. for instance 
larger the result of sensitivity analysis, means there is 
greater variation in the suggested model because of 
changes in the parameter of the interest. The following 
methods have been usually used to analyze the sensitiv-
ity of the suggested model in a particular ANN system 
(14): ‘Partial derivatives (PaD)’, ‘weights’, ‘profile’, and 
‘backward stepwise’ methods. The details of these meth-

ods are given elsewhere (14). Evaluation of the suggest-
ed model quality (robustness of the model parameter) 
is carried out by finding out the extent of contribution 
of the selected functions in describing relationship be-
tween the input, the constructed (hidden), and the out-
put variables (14). In the present study and according 
to the results of sensitivity analysis (weight method / 
NeuralPower software), the quantitative extent of con-
tribution of each input variables on the amount of β-CD 
produced, was presented in Figure 8. 

5. Discussion
Appropriateness of using ANN for living organisms is 

for those behaviors with unclear theory of the action (8). 
Growth dependency of B. licheniformis , in terms of the bac-
terial activity in production of β-CD, on the temperature 
changes of the test system is shown in Figure 9 A. Appar-
ently this pattern followed a mechanism which cannot 
be explained with the data of Figure 9 A. Sigmoid shape 
of the growth curve presents the logistic model which is 
one of the well-known equations in areas of the microbi-
al growth (15). The results presented in Figure 9 are linked 
to those seen in Figure 8 and in describing the robustness 
of the temperature variable in this study, more data are 
needed and small size of information reduce the chance 
of reaching the best decision in expressing the findings 
quality. In other words, higher value obtained for the sen-
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sitivity analysis (Figure 8) indicates that the small change 
in temperature variable is associated with the large varia-
tions in the suggested model behavior. 

Trend of β-CD production as a function of maltodex-
trin concentration is seen in Figure 9 B, production of 
metabolite increases proportionally with the increase of 
substrate concentration, as expected in changes seen in 
microbial growth. In the present study no growth inhibi-
tion behavior due to dextrin as a growth promoting sub-
strate concentration was observed. Growth inhibition 
character due to the substrate has been extensively stud-
ied for many compounds for different microbes. Figure 8 
shows that the sensitivity analysis was the lowest for the 
substrate concentration parameter, i. e. large changes in 
the substrate level is associated with the small variation 
in the suggested model behavior. 

 Figure 9 C shows the effect of the inoculum’s pH on the 
production of β-CD. According to the studies reported in 
the literature, almost all of the bacterial strains capable 
of producing β-CD (most of the Bacillus species) are alka-
lophilic (1 , 2) and the test bacterium used in the present 

study was not alkalophilic strain and an attempt was 
made to modify the pH of the growth medium. During 
adaptation of a bacterium to a new culture medium with 
different pH, it is likely to see fluctuations of the metabo-
lite production (3). More works are needed to better un-
derstand the trend of effects of temperature and inocu-
lum’s pH on the β-CD production by the test bacterium 
used in the present study. 

Production of β-CD by B. licheniformis was satisfactorily 
described in this work based on multivariate data analy-
sis with considering application of the ANN system and 
among five training algorithms examined, performance 
of the IBP and BBP methods were comparable (with con-
sidering R2 and RMSE values). While variation in the IBP 
performance in response to changes of the neuron num-
ber in the hidden layer was considerably lower than BBP. 
The experimental data were best optimized by using ANN 
system coupled to the GA (IBP training method). The re-
sults of the sensitivity analysis showed the following 
trend of importance of input variables: substrate concen-
tration < temperature < inoculum’s pH. 
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Figure 9. The effect of Input parameters on β-CD production predicted by the NeuralPower software: (a) Temperature effect at S = 5 w/v %; inoculums pH 
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