Induction of spawning in common carp *Cyprinus carpio*, using pituitary extract and GnRH analogue in combination with Domperidone

Salar Dorafshan¹, Hossein Mostafavi ², Bagher Mojazi Amiri³

¹Department of Fisheries, College of Natural Resources, Isfahan University of Technology (IUT), Zip code: 84154, Isfahan. ²National Research Center of Genetic Engineering and Biotechnology (NRCGBE), P.O. Box: 14155-6343, Tehran. ³Department of Fisheries and Environmental Science, Faculty of Natural Resources, University of Tehran, P.O. Box: 31585-4314, Karaj, I.R. Iran.

Abstract

The effectiveness of the first Iranian made gonadotropin releasing hormone analogue, [D-Ala⁶ des-Gly¹⁰] GnRH ethylamide, alone or in combination with domperidone, a dopamine antagonist on spawning rate, latency period, working fecundity and embryo viability in common carp, *Cyprinus carpio*, was investigated. Fifty two fish were divided into 5 groups and treated intrapretoneally as follows: 3 mg/Kg b.w. of carp pituitary extract (C.P.E.) as a positive control, GnRHa alone, 10 µg/Kg b.w. or in combination with domperidone, 5 mg/Kg b.w. in a single or double injections 7h apart. A group was treated with propylene glycol 0.2 ml/Kg b.w. alone and considered as control. No female ovulated in groups receiving either propylene glycol or 10 µg/Kg b.w. of GnRHa alone. The spawning rate was higher in female GnRHa+domperidone (10 µg/Kg b.w. +5 mg/kg) in double injections (11 out of 12) as compared to fish which injected either with C.P.E (7 out of 16) or GnRHa + domperidone in a single injection (3 out of 12)(P<0.05). The mean working fecundity, was significantly higher for fish receiving GnRHa+domperidone in single (126214 ± 24315) or double injections (145600 ± 27113) compared to C.P.E treated group (52435 ± 1224) (P<0.05). There were no significant differences for latency period or embryo viability among the groups.

Keywords: spawning induction, carp pituitary extract, GnRH analogue, domperidone.

INTRODUCTION

Modern aquaculture aims to provide a low cost, high quality products according to market demand. Supplying an ondemand consumer products require a reliable and constant production system, which begins with constant supply of eggs and larvae. In a number of cultured fish such as salmonids, the female ovulate spontaneously, but it is necessary for many others to control ovulation and spawning time to enhance reproduction performance.

Induced spawning in common carp, *C. carpio*, is currently carried out in Iran by the hypophyseal approach utilizing carp pituitary extract (C.P.E) which is expensive, not always readily available and with unpredictable activity (Drori *et al.*, 1994). The success of this method is quite variable and average percentage of ovulated female carp reaches only about 60-70% in fish farms around the world (Weil *et al.*, 1986). Furthermore, there is a possibility that pathogen may be present in the donor fish and can be passed on to recipient fish (Zohar, 1989). With respect to these factors, searching for an alternative approach to spawning induction in cultured fish have started. The latest approach is the stimulation of spawning by a synthetic superactive analogue, to release the endogenous gonadotropine (GtH) from the pituitary of treated fish. One of the most effective analogues is [D-Ala⁶ des-Gly¹⁰] GnRH ethylamide (Zohar, 1989).

To facilitate the GtH releasing activity of GnRHa, especially in cyprinids, it is necessary to combine it
with a dopamine receptor antagonist such as domperidone, pimozide or metoclopramide (Peter et al., 1988).

Induction of spawning in fish using a superactive GnRH analogue together with one of these dopamine antagonists is known as the Linpe method (Peter et al., 1988) which is now used in many parts of the world. The success of using GnRHα alone or in combination with dopamine antagonist in spawning induction of various fish has been reviewed by Zohar, 1989; Peter et al., 1988; Yaron, 1995; Zohar and Mylonas, 2001 and Szabó et al., 2002. The induction of spawning in cultured cyprinids in Iran including common carp (Ghezel, 1993) has been reported using Receptal (GnRHα) combined with metoclopramide. The effectiveness of the Iranian made GnRHα for induction of spawning (ovulation and spermiation) in rainbow trout i.e. Oncorhynchus mykiss, was also evaluated recently (Dorafshan et al., 2002; Paykan heyратی et al., 2002).

The objectives of the present study were: a) To examine the effects of GnRHα alone or combined with domperidone on induction of spawning in common carp. b) To compare two methods of induction of spawning, i.e. hypophyseal and Linpe methods, with respect to the spawning rate (the number of ovulated fish/number of injected female), latency period (the time between treatment and ovulation), working fecundity (the number of stripped eggs/Kg b.w.) and embryo viability (the number of viable embryos divided by total number of eggs×100).

MATERIALS AND METHODS

Stock: Spawning experiments were conducted on 2-3 years old common carp females, *C. carpio*, at Shahid Maleki fish farm, Ahwas, Iran, during March 2002. Fifty two female fish weighing 2.8-4 kg b.w. were selected from earthen ponds for ripeness. This selection was based on the softness of their abdomens as pointed out by Weil et al. (1986). Fishes were then transferred into indoor concrete tanks with running water of 20-22°C. Prior to injections, fish were anesthetized in 100 ppm MS222 bath, individually weighed and marked by placing visible tags on dorsal fin, randomly divided into treatment groups.

Hormone preparation: A GnRH analogue (D-Ala^6^ Des Gly^10^) GnRHα ethylamide and dopamine receptor antagonist, domperidone were supplied by NRCGEB, diluted in 40% propylene glycol to achieve a concentration of 10 µg of GnRHα with or without domperidone 5 mg per kg b.w. at a final injection volume of 0.2 ml/kg b.w. Three mg pituitary glands per kg. b.w. of broodstock was used for induction of spawning in solution form (0.7% saline) according to Billard (1990).

Experiments: Fifty two fish were anaesthetized and injected intraperitoneally (i.p.) with different preparations as follows: vehicle, propylene glycol as a negative control (n=6), carp pituitary extract (C.P.E.) as positive control (n=16), GnRHα alone (n=6), GnRHα +domperidone in a single (n=12) or double injection (n=12) in groups 1-5, respectively (Table1). Females were checked for ovulation, every 30-45 min. 9 h after final the injection. When ovulation was observed, the eggs were stripped and batches of approximately 200g were collected from each individual female and fertilized with milt from at least two males (Szabo et al., 2002). Batches of fertilized eggs were incubated separately at 20-22°C.

Spawning rate (the number of ovulated fish/total number of injected fish) and embryo viability percentage (number of viable embryos/total number of eggs ×100) were determined according to Kulikovsky et al. (1996). The latency period (the mean time between treatment and ovulation) and working fecundity (the number of stripped eggs/kg b.w.) were calculated
Statistical analysis: Spawning rate was analyzed by chi-square test (Szabo et al., 2002) the differences in latency period, working fecundity and embryo viability data were analyzed by one way analysis of variance (ANOVA) at minimum significant of P<0.05. Results are presented as means±S.E.M (Kulikovsky et al., 1996).

RESULTS

The fish used in this study were in pre-spawning stage. The results of the effects of hormonal treatment on spawning rate and latency period are summarized in table 2. No ovulation was observed in groups receiving either vehicle (propylene glycol) or GnRHa alone (groups 1 and 3, respectively). Seven out of sixteen (7/16) fish ovulated in group 2 receiving C.P.E as the positive control (approx. 43%). The number of ovulated fish in groups 4 and 5 which received GnRHa +domperidone as single or double injections were three and eleven out of twelve respectively. There was no significant difference in spawning rate between groups 1 and 3 (receiving vehicle or GnRHa alone) and groups 2 and 4 (receiving C.P.E or GnRHa+domperidone in single injection). However the spawning rate in group 5 which received GnRHa+domperidone in 2 injections protocol 7 h. apart, was significantly higher than all other groups (P<0.05). Data on latency period are also shown in table 2.

Ovulation in females was detected 10-16 h after treatment, the latency period were measured as 10-12, 14-16 and 10-14 h in groups receiving C.P.E and single or double injection GnRHa+domperidone respectively (Table 2). Although the latency periods were relatively higher in GnRHa+domperidone injected groups as compared with C.P.E. treated fish, but there were no significant differences between the groups.

The mean working fecundity in ovulated fish is shown in table 3. The mean working fecundity in treated fish with single or double injection of GnRHa +domperidone were 126216 ± 24315 and 145600 ± 27113, respectively, and significantly higher than C.P.E. treated fish, 54435 ± 1224 (P<0.05). The per-

Table 2. Spawning rate and latency period in common carp, C. carpio following hypophysal treatment or GnRH alone or GnRH combined with domperidone.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Spawning rate</th>
<th>latency period (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle</td>
<td>0/6</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Carp pituitary extract (C.P.E)</td>
<td>7/16</td>
<td>10-12</td>
</tr>
<tr>
<td>3</td>
<td>GnRH</td>
<td>0/6</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>GnRH + domperidone (single injection)</td>
<td>3/12</td>
<td>14-16</td>
</tr>
<tr>
<td>5</td>
<td>GnRH + domperidone (double injection)</td>
<td>11/12</td>
<td>10-14</td>
</tr>
</tbody>
</table>

Groups designated by the same letters are not significantly different (P>0.05).

n.s.: no significant.

Table 3. Working fecundity (stripped egg No/kg b.w.) and embryo viability (%) in common carp, C. carpio, following hypophysal, GnRH alone, or GnRH combined with domperidone treatment.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Working fecundity</th>
<th>Embryo viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle</td>
<td>0</td>
<td>-----</td>
</tr>
<tr>
<td>2</td>
<td>C.P.E</td>
<td>52435±1224</td>
<td>64.3±5.6</td>
</tr>
<tr>
<td>3</td>
<td>GnRH</td>
<td>0</td>
<td>-----</td>
</tr>
<tr>
<td>4</td>
<td>GnRH+domperidone (single injection)</td>
<td>126214±24315</td>
<td>57.8±6.6</td>
</tr>
<tr>
<td>5</td>
<td>GnRH+domperidone (double injection)</td>
<td>145600±27113</td>
<td>62.4±4.8</td>
</tr>
</tbody>
</table>

Groups designated by the same letter are not significantly different (P>0.05).

n.s.: no significant.

according to Drori et al., 1994 and Billard, 1990, respectively.
percentages of embryo viability are also shown in table 3, when was 64.3 ± 5.6, 57.8 ± 6.6 and 62.4 ± 4.8 % in groups receiving C.P.E., GnRHa+domperidone in single and double injected groups respectively. Although the mean embryo viability was lower in group treated with single injection of GnRHa+domperidone (57.8 ± 6.6%) than two other groups, there was no significant difference between the groups.

DISCUSSION

The necessity of using inducing agents such as C.P.E., HCG and GnRHa for induction of spawning has been demonstrated in cyprinid fish such as common and Chinese carps (Weil et al., 1986; Peter et al., 1988) as well as Indian major carps (Chaudhuri, 1976). No ovulated fish was observed in the group receiving GnRHa alone due to the strong dopamine inhibitory tone on pituitary GtH secretion in common carp. It has been previously demonstrated that combination of GnRHa with a dopamine receptor antagonist such as domperidone or metclopramide is necessary for spawning induction in cyprinid fish such as common carp (Ghezel, 1993), loach Paramisgurnus dabryanus (Lin et al., 1987) and nase, Chondrostoma nasus (Szabo et al., 2002).

Ninty percent of fish ovulated in the group treated with GnRHa+domperidone in two injections, given 7h. apart, which was significantly higher than C.P.E. (7/16) or GnRHa+domperidone in one injection (3/12) treated groups. The higher spawning rate in fish receiving GnRHa+domperidone in two injections compared to C.P.E. treated fish, is probably due to the more effectiveness of synthetic hormones rather than the pituitary extracts and the exact dosage of this superactive compounds (Zohar, 1989). Using GnRHa+domperidone in one injection showed lowest spawning rate in common carp, this could be due to rapid clearance of GnRHa from blood circulation under the influence of cytosolic enzyme activities in the pituitary, kidney and liver. Zohar and Mylonas (2001) noted that the mean time activity of GnRHa is too short (approx. 23 min) and it is better to use multiple injections of aqueous solution or slow release delivery systems of GnRHa for successful induction of spawning in fish. However, they pointed out that a single injection of GnRHa + dopamine antagonist is usually sufficient for spawning induction in common as well as Chinese carps. Such variations are probably due due to the differences following factors, the stage of ovary maturation, genetic variability among broodstocks, the purity and kind of GnRH analogue and dopamine antagonist receptors.

The latency period is relatively higher in groups receiving GnRHa+domperidone compared to C.P.E. treated fish, although there are no significant differences. Probably C.P.E. acts on the gonads while GnRHa acts at a higher level of the reproductive axis. Another reason could be propylene glycol as a GnRHa+domperidone solvent cause lesser releasing of this compound in the blood circulation as compared to C.P.E. saline solution, which cause higher levels of latency period in GnRHa+domperidone treated fish (Zohar and Mylonas, 2001).

According to our results the working fecundity in spawned fish was approximately in the range of 50-150 thousands. Although it was higher in GnRHa+domperidone as compared to fish treated with C.P.E but there was no significant difference between GnRHa+domperidone injected fish. It appears that 3 mg/kg of C.P.E was capable of inducing significant changes in the ovary but it is not high enough to induce complete ovulation under given conditions. However it was reported that this dosage is effective for complete spawning process in female common carp (Zohar, 1989). In addition, previous studies did not show any difference between the percent of stripped eggs/kg b.w. in common carp (Ghezel, 1993), silver carp (Makhdomi, 1993) and grass carp (Ghanei Tehrani, 1993) treated either with GnRHa+metoclopramide or C.P.E. These differences are probably due to the variability in the pituitary glands potency and GtH concentration, which depend on the origin of C.P.E., harvesting time of the pituitary gland and storing conditions (Nandeesha et al., 1990).

Brzuska (1990) reported that the ovulation index in grass carp, Ctenopharyngodon idella and silver carp, Hypophthalmichthys molitrix, did not differ in females treated with adequate dose of GnRHa+pimozide or carp pituitary. The present study also showed that different doses of GnRHa in rainbow trout, O. mykiss, did not show any significant difference in the mean weight of stripped eggs×100/kg b.w. compared to untreated fish (Dorafshan et al., 2002).

Embryo viability didn’t show any significant difference between groups, it is suggested that GnRHa+domperidone didn’t show any adverse effect on egg viability under experimental conditions in Ahwaz. Similar results were obtained on common carp.
(Ghezel, 1993; Kulikovsky et al., 1996) and Indian major carps (Nandeesha et al., 1990). However, Szabo et al. (2002), pointed out that using GnRHa + domperidone in order to induce ovulation in nase (C. nasus) resulted in higher fertilization rate as compared to pituitary injected fish, they suggested that it maybe due to higher levels of GnRHa acting site at the reproductive axis compared to pituitary gland, inducing not only the release of endogenous GtH from the pituitary also other important endogenous hormone from pituitary.

In summary, this study demonstrated that the use of new Iranian made GnRHa coupled with domperidone is an effective and reliable procedure for induction of ovulation and spawning in C. carpio in two injections protocol in a total dose of 10 μg +5 mg/kg b.w. in 10-90% injection rate. This method has some advantages over hypophyseal treatments, such as higher working fecundity and the lower cost. However it is necessary to conduct more research on other warm water cultured fish to find out the best injection regime for each special treatments and comparing it with traditional methods.

Acknowledgments
This study was supported by NRCGEB, Tehran, Iran. The authors also thank to prof. H.R. Habibi, University of Calgary, Canada, H. Abdoulhai major manager of fish breeding and restocking program, Iranian Fisheries Company, Shilat, A. Hajizadeh and A. Karami, department of warm water fish culture, Shilat, and S.S. Mosavi manager of Shahid Maleki fish farm, Ahwas, Iran.

References