Increased Acetate Ester Production of Polyploid Industrial Brewer’s Yeast Strains via Precise and Seamless “Self-cloning” Integration Strategy

Document Type : Research Paper

Authors

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China

Abstract

Background: Enhancing the industrial yeast strains ethyl acetate yield through a precise and seamless genetic manipulation strategy without any extraneous DNA sequences is an essential requisite and significant demand.
Objectives: For increasing the ethyl acetate yield of industrial brewer’s yeast strain, all the ATF1 alleles were overexpressed through “self-cloning” integration strategy.
Material and Methods: Escherichia coli strain DH5α was utilized for plasmid construction. ATF1 alleles were overexpressed through a precise and seamless insertion of the PGK1 promoter in industrial brewer’s yeast strain S6. In addition, growth rates, ATF1 mRNA levels, AATase activity, the fermentation performance of the engineered strains, and gas chromatography (GC) analysis was conducted.
Results: The two engineered strains (S6-P-12 and S6-P-30) overexpressed all ATF1 alleles but unaffected normal growth. The ATF1 mRNA levels of the S6-P-12 and S6-P-30 were all 4-fold higher than that of S6. The AATase (Alcohol acetyl transferases, encoded by ATF1 gene) activity of the two engineered strains was all 3-fold higher than that of the parent strain. In the beer fermentation at 10 ℃, the concentrations of ethyl acetate produced by the engineered strains S6-P-12 and S6-P-30 was increased to 23.98 and 24.00 mg L-1, respectively, about 20.44% and 20.54% higher than that of S6.
Conclusions: These results verify that the ethyl acetate yield could be enhanced by the overexpressed of ATF1 in the polyploid industrial brewer’s yeast strains via “self-cloning” integration strategy. The present study provides a reference for target gene modification in the diploid or polyploid industrial yeast strains.

Keywords

Main Subjects


1.           Styger G, Prior B, Bauer FF. Wine flavor and aroma. J Ind Microbiol Biotechnol. 2011;38(9):1145-1159. doi: 10.1007/s10295-011-1018-4 pmid: 21786136
2.           Swiegers JH, Pretorius IS. Yeast modulation of wine flavor. Adv Appl Microbiol. 2005;57:131-175. doi: 10.1016/S0065-2164(05)57005-9 pmid: 16002012
3.           Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS. Yeast and bacterial modulation of wine aroma and flavour. Austr J Grape Wine Res. 2005;11(2):139-173. doi: 10.1111/j.1755-0238.2005.tb00285.x
4.           Styger G, Jacobson D, Bauer FF. Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol. 2011;91(3):713-730. doi: 10.1007/s00253-011-3237-z pmid: 21547456
5.           Rankine BC. Formation of higher alcohols by wine yeasts, and relationship to taste thresholds. J Sci Food Agricult. 1967;18(12):583-589. doi: 10.1002/jsfa.2740181208
6.           Saerens SM, Verbelen PJ, Vanbeneden N, Thevelein JM, Delvaux FR. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl Microbiol Biotechnol. 2008;80(6):1039-1051. doi: 10.1007/s00253-008-1645-5 pmid: 18751696
7.           Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y, Hamachi M. Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Environ Microbiol. 1994;60(8):2786-2792. pmid: 8085822
8.           Lilly M, Lambrechts MG, Pretorius IS. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol. 2000;66(2):744-753. doi: 10.1128/aem.66.2.744-753.2000 pmid: 10653746
9.           Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast. 2006;23(9):641-659. doi: 10.1002/yea.1382 pmid: 16845703
10.        Zhang C-Y, Liu Y-L, Qi Y-N, Zhang J-W, Dai L-H, Lin X, et al. Increased esters and decreased higher alcohols production by engineered brewer’s yeast strains. Eur Food Res Technol. 2013;236(6):1009-1014. doi: 10.1007/s00217-013-1966-1
11.        Delneri D, Tomlin GC, Wixon JL, Hutter A, Sefton M, Louis EJ, et al. Exploring redundancy in the yeast genome: an improved strategy for use of the cre–loxP system. Gene. 2000;252(1-2):127-135. doi: 10.1016/s0378-1119(00)00217-1
12.        Dequin S. The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol. 2001;56(5-6):577-588. pmid: 11601604
13.        Walgate R. Genetic manipulation: Britain may exempt "self-cloning". Nature. 1979;277(5698):589. pmid: 370609
14.        Hirosawa I, Aritomi K, Hoshida H, Kashiwagi S, Nishizawa Y, Akada R. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol. Appl Microbiol Biotechnol. 2004;65(1):68-73. doi: 10.1007/s00253-004-1563-0 pmid: 14758521
15.        Dong J, Wang G, Zhang C, Tan H, Sun X, Wu M, et al. A two-step integration method for seamless gene deletion in baker's yeast. Anal Biochem. 2013;439(1):30-36. doi: 10.1016/j.ab.2013.04.005 pmid: 23597844
16.        Dong J, Xu H, Zhao L, Chen Y, Zhang C, Guo X, et al. Enhanced acetate ester production of Chinese liquor yeast by overexpressing ATF1 through precise and seamless insertion of PGK1 promoter. J Ind Microbiol Biotechnol. 2014;41(12):1823-1828. doi: 10.1007/s10295-014-1522-4 pmid: 25306884
17.        Hashimoto S, Ogura M, Aritomi K, Hoshida H, Nishizawa Y, Akada R. Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol. 2005;71(1):312-319. doi: 10.1128/AEM.71.1.312-319.2005 pmid: 15640203
18.        Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, et al. The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997;387(6632 Suppl):75-78. pmid: 9169867
19.        Gietz RD, Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988;74(2):527-534. doi: 10.1016/0378-1119(88)90185-0 pmid: 3073106
20.        Sambrook J, Russell D. Molecular cloning: a laboratory manual. New York: CSHL press; 2001.
21.        Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11(4):355-360. doi: 10.1002/yea.320110408 pmid: 7785336
22.        Sambrook J, Russell D. Molecular cloning: a laboratory manual. Cold Spring Cold Spring Harbor Laboratory Press; 2001.
23.        Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. doi: 10.1006/meth.2001.1262 pmid: 11846609
24.        Fujii T, Yoshimoto H, Tamai Y. Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltransferase. J Ferment Bioeng. 1996;81(6):538-542. doi: 10.1016/0922-338x(96)81476-0
25.        Alani E, Cao L, Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987;116(4):541-545. pmid: 3305158
26.        Hao X, Xiao D-G, Zhang C-Y, Chen Y-F. Influence of nutrients on proteinase A activity in draft beer during fermentation. Int J Food Sci Technol. 2010;45(6):1169-1174. doi: 10.1111/j.1365-2621.2010.02252.x
27.        Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993;134(3):717-728. pmid: 8349105
28.        Storici F, Lewis LK, Resnick MA. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001;19(8):773-776. doi: 10.1038/90837 pmid: 11479573
29.        Zhao YP, Zheng XP, Song P, Sun ZL, Tian TT. Characterization of Volatiles in the Six Most Well-Known Distilled Spirits. J Am Soc Brew Chem. 2018;71(3):161-169. doi: 10.1094/asbcj-2013-0625-01
30.        Wach A, Brachat A, Pohlmann R, Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994;10(13):1793-1808. pmid: 7747518