
1. Background
Prediction is a part of considerable numbers of scientific 
studies (1, 2). Also, time series analysis is an active 
research area in the modeling of the growth curves (1, 
3-5). However, the accuracy of the applied model is a 
critical issue for many decisions making processes (2, 
5). The advent of powerful computational approaches 
has enabled predictive microbiology to anticipate the 
behavior of a wide range of microorganisms under 
various environmental stimuli (6, 7). The complicated 

modifications in predictive microbiology models such 
as models describing individual cell behavior (8), 
individual lag time (9, 10), secondary models considering 
environmental factors, and their interactions (11, 12) 
have been developed for an accurate prediction of the 
experimental growth curves under different conditions 
(6, 7, 13).

Bacterial growth contains four stages, including 
lag phase, log or exponential phase, stationary phase, 
and death phase. Each phase has computationally 
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been investigated (14-16) such as comparison of the 
bacterial growth parameters (17), formulation of the 
transition from stationary to exponential phases (18), 
estimation of lag phase duration (14), approximation 
of the maximum growth rate (19), predictive models of 
the growth curve, etc. (for review, see 20).

Least square support vector machine (LSSVM) 
is derived from the Support Vector Machine (SVM) 
approach, as described previously (20), providing 
immense computational advantages over the general 
standard SVM. Through combination of a sophisticated 
mathematical approaches in a single bundle, LSSVM 
is a cutting edge approach between theory and the real-
world problems which is the advantage of the machine 
learning methods over that of statistical studies in 
various fields of science such as clinical trials (21, 
22), financial studies (23), engineering (1, 24, 25), etc. 
Nonetheless, the potentiality of the LSSVM approaches 
have been neglected in the bacterial research, and a few 
studies have been published, such as prediction of the 
adaptive colony segmentation (26), ecotoxicity of the 
ionic liquids (27), and estimation of the Escherichia 
coli promoter gene sequences (22).

The estimation of the parameters to feed the 
predictive model is a key step in modeling processes. 
Different optimization algorithms, especially genetic 
algorithm (GA), have widely been employed for 
parameter optimization of the empirical data (2, 28-
30). GA is a simple and accurate approach to calculate 
sigmoid function coefficients. It can also be extended 
to multi-objective optimization (MOO) method for 
solving problems with two fitness functions (31).

2.	 Objectives
Even though growth predictive models are specifically 
developed to provide conservative predictions of a 
given microorganism’s growth under various conditions 
(11, 12), validation studies of the published models 
are not precise enough, which could be due to the 
sensitive nature of the applied algorithms. Considering 
the predictive potential of the LSSVM in a functional 
prediction of experimental data, here, LSSVM based 
algorithms are addressed to the model in a more 
accurate bacterial growth curve. In this way, a novel 
so-called non-dominated Sorting Genetic Algorithm-
II (NSGA-II)-LSSVM algorithm has been employed 
for learning LSSVM tuning parameters. Then, the 
general performance of the proposed algorithm for 
both train and test datasets has been compared with 
GA-LSSVM, simplex-LSSVM, and sigmoid functions 
including Logistic and Gompertz. This comparison has 
been carried out using the mean absolute error (MAE) 

and the mean absolute percentage error (MAPE). All 
algorithms were fitted to the two important bacterial 
strains Listeria monocytogenes, an important food-
borne pathogen (6, 13) and Escherichia coli, a 
renowned prokaryotic model organism in a vast range 
of biological studies.

3. Materials and Methods
Bacterial growth was measured as log colony 
formation unite cfu.mL-1 (18). Growth data of the 
two L. monocytogenes datasets with different initial 
population size (Supplementary Table 1a and b), 
over a period of 552 h were obtained from Augustin 
et al. (11). Furthermore, the growth data of the E. 
coli was profiled by the optical density (OD) using 
spectrophotometry at 610 nm. For E. coli dataset, 
the following information was collected over an 
experimental period of 13 h. E. coli was batch cultured 
in a liquid LB (Luria-Bertani) medium at 37 ˚C and 
the OD was measured (every 30 min) until the death 
phase (Supplementary Table 1c).

3.1. Growth Models
Two paradigms were used to model bacterial growth 
data: sigmoid functions (Eq. 1-3) and LSSVM based 
algorithms (Eqs. 4-18).

3.1.1. Sigmoid Functions Formulation
Sigmoid functions are the general ways of 
computationally treating bacterial growth data.

The logistic function is defined as follow (Eq. 1 and 
3):
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Gompertz function is developed as follow (Eq. 2 and 
3):
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Whereas, ‘µm’ represents the maximum living bacteria 
in a batch culture, ‘λ’ stands for the lag growth phase 
of the bacteria, which is in general small. ‘A’ indicates 
the death phase, e=exp(1), ‘N0’ shows initial bacterial 
population, and ‘N(t)’ is the bacterial population at 
‘t’ time (19) (for comprehensive information see 30). 
Coefficients of the Logistic and Gompertz functions 
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were calculated via trust-region optimization method 
(32) in curve fitting toolbox of MATLAB (version 
8.5.0.197613 - R2015a).

3.1.2.	 LSSVM Mathematical Formulation 
The pivotal difference between SVM and LSSVM is 
that LSSVM solves linear systems instead of quadratic 
programming. In LSSVM for function estimation (i.e., 
here prediction of the bacterial growth curve), the 
optimization problem is formulated (20) as:
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Subject to the equality constraints:
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Where, ‘Φ(x)’ is a nonlinear function that maps input 
space into a high dimensional space, ‘w’ is weighting 
vector and ‘b’ is bias, ‘c’ is the regularization (tuning) 
parameter determining the trade-off between the 
training error minimization and smoothness, and ‘ε’ is 
the training error. The corresponding Lagrange function 
can be written as: 
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In which, ‘ai’ is Lagrange multipliers (or support 

vectors). Taking the partial derivatives with respect to 
‘w’,’b’,‘ε’,‘a’, and equating them to zero, the conditions 
for optimality are obtained as follows:

                                                                                   (7)
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These conditions lead to the following linear system:
                                                                                             
                                                                             
 		                                                         (8)                
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Using Mercer’s condition:
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Therefore, the fitting LSSVM regression would be:
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Several choices are possible for the kernel K(.,.). 
Some typical choices are linear LSSVM (20): 
( ), T

i iK x x x x= , polynomial LSSVM (20) of the 
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 . RBF is a common and powerful function to solve 
regression problems (20, 21, 33). In fact, the RBF 
kernel, unlike the linear kernel, nonlinearly maps 
samples into a higher dimensional space; therefore, 
handles the cases when the relation between inputs 
and outputs vectors is nonlinear. Furthermore, in 
comparison to the polynomial kernel, the RBF kernel 
has less number of hyperparameters which results in 
the fewer numerical difficulties (see 34 for further 
information).

In order to use LSSVM model, ‘ai’ and ‘b’ 
coefficients should be calculated. These coefficients are 
calculated using linear equations of Eq. 8. In this case, 
first of all, ‘c’ and ‘σ’ coefficients should be determined. 
Determination of proper coefficients is critical for 
prediction accuracy.

3.1.3.	 N-fold Cross-Validation
N-fold cross-validation is a common method for 
calculating ‘c’ and ‘σ’ coefficients. This approach starts 
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with the dividing data into modeling (80%) and test 
(20%) datasets (Fig. 1 - Stage I). The modeling dataset 
is used to estimate ‘c’ and ‘σ’ coefficients via GA or 
simplex algorithms, and the test dataset is used to test 
the accuracy of the final trained LSSVM model. Then, 
the modeling dataset is randomly divided into different 
groups (5 groups in this study); in every iteration, one 
group is considered as validation and the others as a 
training dataset. Afterward, LSSVM was trained per 
different ‘c’ and ‘σ’ coefficients which were determined 
through an optimization algorithm. Next, the trained 
LSSVM model was tested using validation data, and 
finally, fitness function (Eq. 18) was calculated (Fig. 1 - 
Stage II-I to IV). This cycle is terminated by finding the 
minimum fitness function. Lastly, the obtained ‘c’ and 
‘σ’ coefficients are the final optimized coefficients (35).

( ) ( )
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Where, ’n’ is the number of groups, ‘m’ represents 
number of data in each group, ‘Gvalidation (i,j)’ is calculated 
value from ‘jth’ data of ‘ith’ group via LSSVM model, 
and ‘Greal(i,j)’ is ‘jth’ data of ‘ith’ group in experimental 
data.

Generally, ‘c’ and ‘σ’ coefficients are optimized 
using simplex-LSSVM. In this paper, GA has been 
additionally used to calculate ‘c’ and ‘σ’ coefficients as 
well as the fitness function. Then, modeling error and 
test error were calculated through modeling dataset, 
trained LSSVM (stage III), and test dataset (stage IV), 
respectively.

3.1.4.	 Proposed Method
Our novel hybrid method; the so-called NSGA-II-
LSSVM, was also applied in the present study. The 
optimization via NSGA-II-LSSVM begins with 
dividing datasets into modeling and test datasets. Then, 
the test dataset was used to test the results of modeling 
dataset. Also, in order to conserve model’s smoothness 
and improving learning accuracy, the modeling dataset 
was divided into training and validation datasets. In our 
method, LSSVM was trained using the training dataset, 
and tested using the validation data. Then, training error 
was considered as the first fitness function (f1) (Eq. 19), 
and validation error as the second fitness function (f2) 
(Eq. 20) (Fig. 2). 

We speculate that minimization of the two fitness 
functions (Eq. 19 and 20) will result in the calculation 
of ‘c’ and ‘σ’ coefficients, and acquired coefficients will 
provide a more accurate and smooth LSSVM modeling 
of the bacterial growth curve.
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Where ‘n’ is the number of training data, ‘Gtrain(t)’ 
stands for logarithmic bacterial grow at ‘t’ time, 
and  ‘ ( )

realtG t ’ show the original value of growth in 
logarithmic scale at ‘t’ time.
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Where ‘m’ is the number of validation data, ‘Gvalidation 
(t)’ represents logarithmic bacterial growth at ‘t’ time, 
and  ‘ ( )

realvG t ’ is the original amount of bacterial 
growth in logarithmic scale at ‘t’ time.

In order to calculate ‘c’ and ‘σ’ coefficients, NSGA-
II: A multi-objective optimization algorithm toolbox 

Figure 1: Flowchart of N-fold cross-validation method. 
Stage I: Dividing dataset into two sets: modeling (80 %) and 
test (20 %). Stage II: Calculation of ‘c’ and ‘σ’ coefficients 
via GA or simplex algorithms; II-I: Dividing dataset into 
two sets of training and validation through cross-validation 
method; II-II: Training of LSSVM per different ‘c’ and ‘σ’ 
coefficients; II-III: Test of trained LSSVM model and fitness 
function calculation (Eq. 18); II-IV: Iteration of stages II-I, 
II-II, and II-III for obtaining the best ‘c’ and ‘σ’ coefficients. 
Stage III: Training of LSSVM model using modeling dataset 
and calculation of modeling error. Stage IV: Test of LSSVM 
model using test dataset, and calculation of test error.
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(http://www.mathworks.com) was employed. For 
complementary information about NSGA-II see 
Supplementary Note 1.

3.2.	 Comparison of the Results
In order to compare the accuracy of the employed 
algorithms, mean absolute error (MAE) (Eq.21) and 
mean absolute percentage error (MAPE %) (Eq.22) 
were used (36).
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MAE

n
=

−
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Where, ‘G(t)’ is the logarithmic bacterial growth at 
time trained by model, and ‘Greal(t)’ is real logarithmic 
bacterial growth at ‘t’ time.

MATLAB (version 8.5.0.197613 - R2015a) codes 
of implementation of LSSVM using the optimized ‘c’ 
and ‘σ’ coefficients obtained from NSGA-II, for E. coli 
growth dataset are presented as Supplementary Note 2.

4.	 Results
Coefficients of Logistic and Gompertz functions for 
each dataset are presented in Tables 1 and 2. Moreover, 
‘c’ and ‘σ’ coefficients of LSSVM based models are 
shown in Table 3. It is important to be stated that ‘c’ 
values should be greater than zero.

Simplex-LSSVM has displayed the more accurate 
result in comparison with sigmoid functions (Figs. 
3-5, Supplementary File 1 and Table 4). In the first 
dataset, comparing simplex-LSSVM with Logistics 
and Gompertz functions, MAPE of modeling indicated 
an improvement in the accuracy of the prediction 
using simplex-LSSVM (1.601, 5.345 and 3.984 for 
simplex-LSSVM, Logistic and Gomperetz models, 
respectively). Consistent results were also observed 
in MAPE of testing dataset (Table 4). Moreover, 
the obtained analogous results regarding the other 
two datasets and MAE value (Table 4) indicated that 
LSSVM is obviously superior to the sigmoid functions. 
Comparing different LSSVM based algorithms, using 
both MAPE and MAE measures, it was revealed that 
even though GA-LSSVM and NSGA-II-LSSVM are 
superior to simplex-LSSVM, NSGA-II-LSSVM is a 

Figure 2. The flowchart of data optimization through 
NSGA-II in LSSVM. Generation of the modeling and test 
datasets. The obtained test datasets were utilized to test the 
trained model. The modeling datasets were also divided into 
training and validation datasets. Training and validating of 
LSSVM were done using training and validation datasets, 
respectively. Then, fitness function was defined as training 
error and validation error. Finally, ‘c’ and ‘σ’ coefficients 
were calculated by minimization of the two obtained fitness 
functions.

Table 1. Estimated parameters of Logistics function using 
curve fitting method.

Ref.ƛ3µm
2A1Dataset

(11)0.05996.6814.2
Listeria monocytogenes 
(Dataset No. 1)

(11)0.05986.2510.15
Listeria monocytogenes 
(Dataset No. 2)

This 
study

1.331.063.26
Escherichia coli 
(Dataset No. 3)

1Death phase
2Maximum alive bacteria in the batch culture (1/h)
3Lag growth phase (h)

Table 2. Estimated parameters of Gompertz function using 
curve fitting method.

Ref.ƛ3µm
2A1Dataset

(11)78.390.05414.91Listeria monocytogenes 
(Dataset No. 1)

(11)72.850.05310.55Listeria monocytogenes 
(Dataset No. 2)

This 
study1.161.0053.306Escherichia coli

(Dataset No. 3)
1Death phase
2Maximum alive bacteria in the batch culture (1/h)
3Lag growth phase (h)
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  Table 3. LSSVM parameters over Simplex, GA and NSGAII optimization algorithms.

Algorithms Simplex GA NSGA-II
Ref.

Dataset c σ c σ c σ

Listeria monocytogenes (Dataset No. 1) 1542.1 0.71 390.7 0.52 449.9 0.36 (11)

Listeria monocytogenes (Dataset No. 2) 2016.4 0.99 318.5 0.53 912.3 0.62 (11)

Escherichia coli (Dataset No. 3) 860851.5 0.65 3889.9 0.41 117453.1 0.50 This study

Figure 3. NSGA-II-LSSVM hybrid algorithm for L. monocytogenes (Dataset No. 1) growth modeling. ‘N0’ displays initial 
bacterial population, and ‘N(t)’ is bacterial population at ‘t’ time. A: Modeling data, B: Test data, accuracy of the applied 
algorithm is defined by the proximity between predicted and observed values, C: Comparing modeling errors of the applied 
approaches including sigmoid functions (Logistic and Gompertz) and LSSVM based algorithms (Simplex, GA-LSSVM and 
NSGA-II-LSSVM) (Supplementary File 1).

Figure 4. NSGA-II-LSSVM hybrid algorithm for L. monocytogenes (Dataset No. 2) growth modeling. ‘N0’ displays the 
initial bacterial population, and ‘N(t)’ is bacterial population at the ‘t’ time. A: Modeling data, B: Test data, accuracy of the 
applied algorithm is defined by the proximity between predicted and the observed values, C: Comparing modeling errors of 
the applied approaches including sigmoid functions (Logistic and Gompertz) and LSSVM based algorithms (Simplex, GA-
LSSVM and NSGA-II-LSSVM) (Supplementary File 1).
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more advantageous approach for the modeling bacterial 
growth curve (less MAPE and MAE values) (Table 4). 
However, no difference was observed in MAE of the 
test dataset of E. coli population (Table 4).

In general, modeling errors in the two optimization 
approaches (GA and NSGA-II), based on MAPE and 
MAE in the train and validation datasets pinpointed that 

NSGA-II-LSSVM to be the most accurate approach 
for the bacterial growth prediction in this study. The 
proximity between predicted and the observed values 
displayed the accuracy of the applied model (Fig. 
3-5, Supplementary File 1 and Table 4). The errors of 
predictive models of the test dataset are also shown in 
test column of Table 4.

Table 4. The result of sigmoid and LSSVM based algorithms over three bacterial datasets.

Model

Ref.:

Listeria monocytogenes
(Dataset No. 1)

Listeria monocytogenes
(Dataset No. 2)

Escherichia coli
(Dataset No. 3)

(11) (11) This study

Modeling Test Modeling Test Modeling Test

MAPE1 
%

MAE2
MAPE 

%
MAE

MAPE 
%

MAE
MAPE 

%
MAE

MAPE 
%

MAE
MAPE 

%
MAE

Logistic 5.345 0.360 4.554 0.239 4.142 0.194 3.746 0.175 3.686 0.091 4.37 0.109

Gompertz 3.984 0.268 3.818 0.208 2.036 0.095 2.821 0.131 2.318 0.057 3.070 0.076

Simplex-LSSVM 1.601 0.106 3.142 0.169 1.312 0.061 2.418 0.111 0.401 0.010 0.748 0.018

GA-LSSVM 1.579 0.106 3.110 0.169 1.218 0.059 2.402 0.109 0.391 0.009 0.748 0.018

NSGAII-LSSVM 1.565 0.105 3.091 0.168 1.214 0.056 2.346 0.109 0.358 0.008 0.722 0.018

1 Mean Absolute Percentage Error
2 Mean Absolute Error

Figure 5. NSGA-II-LSSVM hybrid algorithm for E. coli (Dataset No. 3) growth modeling. ‘N0’ displays the initial bacterial 
population and ‘N(t)’ is bacterial population at ‘t’ time. A: Modeling data, B: Test data; accuracy of the applied algorithm 
is defined by the proximity between the predicted and the observed values, C: Comparing modeling errors of the applied 
approaches including sigmoid functions (Logistic and Gompertz) and LSSVM based algorithms (Simplex, GA-LSSVM and 
NSGA-II-LSSVM) (Supplementary File 1).
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5. Discussion
In the present study, sigmoid functions and LSSVM 
based algorithms were employed to model bacterial 
growth curve. Unlike conventional LSSVM model, 
a MOO method (NSGA-II) was applied to calculate 
coefficients (‘c’ and ‘σ’) for LSSVM training procedure. 
The accuracy of the proposed hybrid model was verified 
through several comparisons of the methods using 
MAE and MAPE. 

Even though Logistics and Gompertz functions have 
widely been applied for modeling of the bacterial growth 
due to their simplicity (19, 37), they are less accurate 
comparing to the sophisticated approaches. Actually, 
nonlinear time series models, such as LSSVM, have 
been developed, because of limitations of the linear 
methods, to improve the forecasting performance (27).
Consistent with our previous study (30), GA, due to its 
simplicity and accuracy, is a more appropriate parameter 
optimizer approach to calculate sigmoid function 
coefficients. However, to solve the optimization 
problems with two fitness functions, MOO approaches 
are superior (31). In this study, using NSGA-II for 
calculating the two coefficients: ‘c’ and ‘σ’, has resulted 
in a better optimization in addition to an increased 
accuracy of the bacterial growth modeling, accordingly.
The hybrid models overcome the deficiencies of 
the individual models through merging different 
methods which result in the improvement of the 
prediction accuracy (2). The distinct differences 
between conventional LSSVM models and hybrid 
LSSVM model, aligned with various studies (1, 22, 
26, 38), revealed the accuracy of hybrid models for 
the bacterial growth prediction in comparison to the 
single models. Although the developer of a prediction 
method should determine a proper model considering 
the characteristics of each method (2), finding the best 
scenario also depends on the nature of underlying 
data distribution, for instance, combination of feature 
selection (FS) and LSSVM has shown100% success 
rate in recognizing E. coli promoter gene sequence 
(22), or self-organizing map (SOM), and LSSVM has 
shown a promising alternative technique for river flow 
time series forecasting (1).

In conclusion, through exploring the capability and 
effectiveness of the idea of the hybrid modeling, we 
found NSGA-II-LSSVM outperforms other models, 
which in turn provides a promising alternative technique 
for prediction of the bacterial growth curve. In fact, the 
proposed model offers a better prediction due to its 
capability for fitting appropriate coefficients values. 
Prior studies, with different prediction approaches, 
have addressed other bacterial population datasets, 

therefore, more efforts should be made using other 
strains, different datasets of experimental cases and/or 
under various environmental conditions to check the 
robustness of our proposed hybrid model. Additionally, 
finding a more optimal kernel function for a given 
learning task is still open to debate.
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