Effect of Olibanum Extract/ Graphene Oxide on Differentiation of Bone Marrow Mesenchymal Stem Cells Into Neuron- Like Cells on Freeze Dried Scaffolds

Document Type : Research Paper

Authors

1 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

2 Department of Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

3 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.

Abstract

Background: One of the challenges in using stem cells to neural repair is to induce their differentiation into neurons and lack of glial formation.

Objectives: Mesenchymal stem cells have revealed great potential for neural reorganization and renewal by taking advantage of differentiation capabilities. Here we explored the potential use of olibanum extract in freeze-dried scaffolds for induction of stem cells differentiation.

Materials and Methods: In this study, gelatin/ collagen/olibanum/ graphene oxide (GEL/COL/OL/GO) freeze-dried scaffolds were synthesized and then adult rat bone marrow mesenchymal stem cells (BMMSCs) were seeded on scaffolds. The viability of cells was evaluated using MTT test on days 1, 3 and 5. The morphology of the cells seeded on scaffolds was studied using SEM and specific protein expression detected by immunohistochemical analysis. Real-time PCR was applied to detect the expression of Chat, Pax6, Hb-9, Nestin, Islet-1, and neurofilament-H (NF-H). The data were analyzed using Tukey test and one-way ANOVA and the means difference was considered significant at P<0.05, P<0.01, and P<0.001.

Results: Showed that the pore size is increased in GEL/COL/OL/GO scaffolds compared with GO-free scaffolds and higher attachment and proliferation of BMMSCs on GEL/COL/OL /1.5% GO scaffolds compared to GEL/COL/OL/3% GO scaffolds. The cell viability results after 5 days of incubation showed the significant biocompatibility of GEL/COL/OL /1.5% GO freeze-dried scaffold. The results of immunohistochemical and PCR analysis revealed positive role of GEL/COL/OL/1.5% GO scaffolds in upregulation of neuron-specific markers.

Conclusion: These results reveal the great potential of GEL/COL/OL/GO scaffolds for nerve regeneration. Our data suggested that both OL extract and GO can regulate the MSCs differentiation into neurons.

Keywords

Main Subjects


  1. References

    1. Lee WC, Loh KP, Lim CT. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials. 2018;155:236-250. doi:10.1016/j.biomaterials.2017.10.004.
    2. Pan Y, Liu F, Qi X, Hu Y, Xu F, Jia H. Nerve Growth Factor Changes and Corneal Nerve Repair after Keratoplasty. Optom Vis Sci. 2018;95(1):27-31. doi:10.1097/opx.0000000000001158. 
    3. Chico B, Pérez-Maceda BT, San José S, Escudero ML, García-Alonso MC, Lozano RM. Corrosion Behaviour and J774A. 1 Macrophage Response to Hyaluronic Acid Functionalization of Electrochemically Reduced Graphene Oxide on Biomedical Grade CoCr. Metals. 2021;11(7):1078. doi:10.3390/met1107 1078.
    4. Di Stefano V, Schillaci D, Cusimano MG, Rishan M, Rashan L. In vitro antimicrobial activity of frankincense oils from Boswellia sacra grown in different locations of the Dhofar region (Oman). Antibiotics. 2020;9(4):195. doi:10.3390/antibiotics9040195.
    5. Kebebe D, Belete A, Gebre-Mariam T. Evaluation of two olibanum resins as rate controlling matrix forming excipients in oral sustained release tablets. Ethiop Pharm J. 2010;28:95-109. doi:10.4314/epj.v28i2.4.
    6. Lee KP, Park ES, Kim DE, Park IS, Kim JT, Hong H. Artemisinin attenuates platelet-derived growth factor BB-induced migration of vascular smooth muscle cells. Nutr Res Pract. 2014;8(5):521-525. doi:10.4162/nrp.2014.8.5.521.
    7. Meyer M, Morgenstern B. Characterization of gelatine and acid soluble collagen by size exclusion chromatography coupled with multi angle light scattering (SEC-MALS). Biomacromolecules. 2003;4(6):1727-1732. doi:10.1021/bm03 41531.
    8. Aidun A, Zamanian A, Ghorbani F. Novel bioactive porous starch-siloxane matrix for bone regeneration: Physicochemical, mechanical, and in vitro properties. Biotechnol Appl Biochem. 2019;66(1):43-52. doi:10.1002/bab.1694.
    9. Selvakumar G, Lonchin S. Fabrication and characterization of collagen-oxidized pullulan scaffold for biomedical applications. Int J Biol Macromol. 2020;164:1592-1599. doi:10.1016/j.ijbiomac.2020.07.264.
    10. Honda M, Hariya R, Matsumoto M, Aizawa M. Acceleration of Osteogenesis via Stimulation of Angiogenesis by Combination with Scaffold and Connective Tissue Growth Factor. Materials (Basel). 2019;12(13). doi:10.3390/ma12132068.
    11. Li C, Wang F, Zhang R, Qiao P, Liu H. Comparison of Proliferation and Osteogenic Differentiation Potential of Rat Mandibular and Femoral Bone Marrow Mesenchymal Stem Cells In Vitro. Stem Cells Dev. 2020;29(11):728-736. doi10.1089/scd.2019.0256.
    12. Grenier J, Duval H, Barou F, Lv P, David B, Letourneur D. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomater. 2019;94:195-203. doi:10.1016/j.actbio.2019.05.070.
    13. Nagel J, Wollner S, Schurmann M, Brotzmann V, Muller J, Greiner JF, et al. Stem cells in middle ear cholesteatoma contribute to its pathogenesis. Sci Rep. 2018;8(1):6204. doi:10.1038/s41598-018-24616-4.
    14. Mahmoudi E, Mozhgani SH, Sharifinejad N. The role of mycobiota-genotype association in inflammatory bowel diseases: a narrative review. Gut Pathog. 2021;13(1):31. doi:10.1186/s13099-021-00426-4.
    15. Bruni S, Guglielmi V. Identification of archaeological triterpenic resins by the non-separative techniques FTIR and 13C NMR: the case of Pistacia resin (mastic) in comparison with frankincense. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:613-622. doi:10.1016/j.saa.2013.10.098.
    16. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities. PLoS One. 2016;11(6):e0157612. doi:10.1371/journal.pone.0157612.
    17. Fiorani A, Gualandi C, Panseri S, Montesi M, Marcacci M, Focarete ML, et al. Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. J Mater Sci Mater Med. 2014;25(10):2313-2321. doi:10.1007/s10856-014-5196-2.
    18. Li Y, Chen M, Zhou W, Gao S, Luo X, Peng L, et al. Cell-free 3D wet-electrospun PCL/silk fibroin/Sr(2+) scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomater. 2020;113:196-209. doi:10.1016/j.actbio.2020.06.017.
    19. Sousa RO, Alves AL, Carvalho DN, Martins E, Oliveira C, Silva TH, et al. Acid and enzymatic extraction of collagen from Atlantic cod (Gadus Morhua) swim bladders envisaging health-related applications. J Biomater Sci Polym Ed. 2020;31(1):20-37. doi: 10.1080/09205063.2019.1669313.
    20. Karimi N, Kharaziha M, Raeissi K. Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics. Mater Sci Eng C Mater Biol Appl. 2019;98:140-152. doi:10.1016/j.msec.2018.12.136.
    21. Sametband M, Kalt I, Gedanken A, Sarid R. Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl Mater Interfaces. 2014;6(2):1228-1235. doi:10.1021/am405040z.
    22. Al-Dahmash ND, Al-Ansari MM, Al-Otibi FO, Singh AR. Frankincense, an aromatic medicinal exudate of Boswellia carterii used to mediate silver nanoparticle synthesis: Evaluation of bacterial molecular inhibition and its pathway. J Drug Deliv Sci Technol. 2021;61:102337. doi:10.1016/j.jddst.2021.102337.
    23. Sharma T, Jana S. Bioassay-guided isolation, identification, and evaluation of anti-inflammatory activity of β-boswellic alcohol and 3-o-acetyl-11-hydroxy-β-boswellic acid from the leaves of Boswellia serrata. Pharmacogn Mag. 2020;16(69):264.
    24. Tambe A, Pandita N, Kharkar P, Sahu N. Encapsulation of boswellic acid with β-and hydroxypropyl-β-cyclodextrin: Synthesis, characterization, in vitro drug release and molecular modelling studies. J Mol Struct. 2018;1154:504-510. doi:10.1016/j.molstruc.2017.10.061.
    25. Xu C, Wang Y. Chemical composition and structure of peritubular and intertubular human dentine revisited. Arch Oral Biol. 2012;57(4):383-391. doi:10.1016/j.archoralbio.2011.09.008.
    26. Rajasree SR, Gobalakrishnan M, Aranganathan L, Karthih M. Fabrication and characterization of chitosan based collagen/gelatin composite scaffolds from big eye snapper Priacanthus hamrur skin for antimicrobial and anti oxidant applications. Mater Sci Eng C. 2020;107:110270. doi:10.1016/j.msec.2019.110270.
    27. Goheen SC, Lis LJ, Kauffman JW. Raman spectroscopy of intact feline corneal collagen. Biochim Biophys Acta. 1978;536(1):197-204. doi:10.1016/0005-2795(78)90065-x.
    28. Hashim D, Man YC, Norakasha R, Shuhaimi M, Salmah Y, Syahariza Z. Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 2010;118(3):856-860. doi:10.1016/j.foodchem.2009.05.049.
    29. Cebi N, Durak MZ, Toker OS, Sagdic O, Arici M. An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chem. 2016;190:1109-1115. doi:10.1016/j.foodchem.2015.06.065.
    30. Ahmad Ruzaidi DA, Mahat MM, Mohamed Sofian Z, Nor Hashim NA, Osman H, Nawawi MA, et al. Synthesis and Characterization of Porous, Electro-Conductive Chitosan–Gelatin–Agar-Based PEDOT: PSS Scaffolds for Potential Use in Tissue Engineering. Polymers. 2021;13(17):2901. doi:10.3390/polym13172901.
    31. Fon D, Zhou K, Ercole F, Fehr F, Marchesan S, Minter MR, et al. Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain. Biomaterials. 2014;35(9):2692-2712. doi:10.1016/j.biomaterials.2013.12.016.
    32. Ghorbani F, Zamanian A, Kermanian F, Shamoosi A. A bioinspired 3D shape olibanum-collagen-gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration. Biotechnol Prog. 2020;36(1):e2918. doi:10.1002/btpr.2918.
    33. Guo W, Qiu J, Liu J, Liu H. Graphene microfiber as a scaffold for regulation of neural stem cells differentiation. Sci Rep. 2017;7(1):5678. doi:10.1038/s41598-017-06051-z.
    34. Spelman K, Aldag R, Hamman A, Kwasnik EM, Mahendra MA, Obasi TM, et al. Traditional herbal remedies that influence cell adhesion molecule activity. Phytother Res. 2011;25(4):473-483. doi: 10.1002/ptr.3350.
    35. Hosseini-sharifabad M, Esfandiari E. Effect of Boswellia serrata gum resin on the morphology of hippocampal CA1 pyramidal cells in aged rat. Anat Sci Int. 2015;90(1):47-53. doi:10.1007/s12565-014-0228-z.
    36. Morgese MG, Bove M, Francavilla M, Schiavone S, Dimonte S, Colia AL, et al. Sublingual AKBA Exerts Antidepressant Effects in the Abeta-Treated Mouse Model. Biomolecules. 2021;11(5). doi:10.3390/biom11050686.
    37. Marefati N, Beheshti F, Memarpour S, Bayat R, Naser Shafei M, Sadeghnia HR, et al. The effects of acetyl-11-keto-beta-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine. 2020;131:155107. doi:10.1016/j.cyto.2020.155107.
    38. Wang Y, Sun Y, Wang C, Huo X, Liu P, Wang C, et al. Biotransformation of 11-keto-beta-boswellic acid by Cunninghamella blakesleana. Phytochemistry. 2013;96:330-336. doi:10.1016/j.phytochem.2013.07.018.
    39. Zhou K, Motamed S, Thouas GA, Bernard CC, Li D, Parkington HC, et al. Graphene Functionalized Scaffolds Reduce the Inflammatory Response and Supports Endogenous Neuroblast Migration when Implanted in the Adult Brain. PLoS One. 2016;11(3):e0151589. doi:10.1371/journal.pone.0151589.
    40. Amri IA, Mabood F, Kadim IT, Alkindi A, Al-Harrasi A, Al-Hashmi S, et al. Evaluation of the solubility of 11-keto-beta-boswellic acid and its histological effect on the diabetic mice liver using a novel technique. Vet World. 2021;14(7):1797-1803. doi:10.14202/vetworld.2021.1797-1803.
    41. Miao XD, Zheng LJ, Zhao ZZ, Su SL, Zhu Y, Guo JM, et al. Protective Effect and Mechanism of Boswellic Acid and Myrrha Sesquiterpenes with Different Proportions of Compatibility on Neuroinflammation by LPS-Induced BV2 Cells Combined with Network Pharmacology. Molecules. 2019;24(21). doi:10.3390/molecules24213946.
    42. Mohamed TM, Youssef MAM, Bakry AA, El-Keiy MM. Alzheimer’s disease improved through the activity of mitochondrial chain complexes and their gene expression in rats by boswellic acid. Metab Brain Dis. 2021;36(2):255-264. doi:10.1007/s11011-020-00639-7.