Contribution of TWIST1-EVX1 Axis in Invasiveness of Esophageal Squamous Cell Carcinoma; a Functional Study

Document Type : Research Paper

Authors

1 Department of biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.

2 Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Biology, Faculty of Sciences, Zand Institute of Higher Education, Shiraz, Iran

4 Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran

Abstract

Background: Epithelial-mesenchymal transition (EMT) is a biological process in embryonic development and cancer 
progression, and different gene families, such as HOX genes, are closely related to this process. 
Objectives: Our aim in this study was to investigate the correlation between TWIST1 and EVX1 mRNA expression in 
ESCC patients and also examine the probable regulatory function of TWIST1 on EVX1 expression in human ESCC cell 
line. 
Materials and Methods: TWIST1 and EVX1 gene expression patterns were assessed in ESCC patients by relative 
comparative Real-time PCR then correlated with their clinical characteristics. In silico analysis of the EVX1 gene was 
conducted. KYSE-30 cells were transduced by a retroviral system to ectopically express TWIST1, followed by qRT-PCR 
to reveal the correlation between TWIST1 and EVX1 gene expression. 
Results: The expression of TWIST1 and EVX1 was correlated to each other significantly (p=0.005) in ESCC. Of 28 
patients with under/normal expression of TWIST1, 22 samples (78.57%) had over/normal expression of EVX1. TWIST1 
overexpression was correlated with advanced stages of the tumor (III, IV) (P = 0.019) and lymph node metastasis. 
However, EVX1 under expression was associated with lymph node metastasis (p = 0.027) and invasiveness of the 
disease (P = 0.037) in ESCC. Furthermore, retroviral transduction enforced significant overexpression of TWIST1 in 
GFP-hTWIST-1 approximately 9-fold compared to GFP control cells, causing a – 8.83- fold reduction in EVX1 mRNA 
expression significantly. 
Conclusions: Our results indicated the repressive role of TWIST1 on EVX1 gene expression in ESCC. Therefore, our 
findings can help dissect the molecular mechanism of ESCC tumorigenesis and discover novel therapeutic targets for 
ESCC invasion and metastasis

Keywords

Main Subjects


  1. References

    1. Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003;120(11):1351-1383. doi: 10.1016/j.mod.2003. 06.005
    2. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006;12(18):5369-5376. doi: 10.1158/1078-0432.CCR-05-2722
    3. Taniguchi Y. Hox transcription factors: modulators of cell-cell and cell-extracellular matrix adhesion. Biomed Res Int. 2014;2014. doi:10.1155/2014/591374
    4. Banerjee-Basu S, Baxevanis AD. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res. 2001;29(15):3258-3269. doi: 10.1093/nar/29.15.3258
    5. Brotto DB, Siena ÁDD, de Barros II, Carvalho SdCeS, Muys BR, Goedert L, et al. Contributions of HOX genes to cancer hallmarks: enrichment pathway analysis and review. Tumor Biol. 2020;42(5):1010428320918050. doi:10.1177/1010428320918050
    6. Takebayashi-Suzuki K, Suzuki A. Intracellular Communication among Morphogen Signaling Pathways during Vertebrate Body Plan Formation. Genes. 2020;11(3):341. doi:10.3390/genes11030341
    7. Avaron F, Thaëron-Antono C, Beck CW, Borday-Birraux V, Géraudie J, Casane D, et al. Comparison of even-skipped related gene expression pattern in vertebrates shows an association between expression domain loss and modification of selective constraints on sequences. Evol Dev. 2003;5(2):145-156. doi:10.1046/j.1525-142X.2003.03021.x
    8. Mallak AJ, Abbaszadegan MR, Khorasanizadeh PN, Forghanifard MM. Contribution of EVX1 in aggressiveness of esophageal squamous cell carcinoma. Pathol Oncol Res. 2016;22(2):341-347. doi:10.30476/mejc.2019.44684
    9. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415-428. doi:10.1038/nrc2131
    10. de Herreros AG, Peiro S, Nassour M, Savagner P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia. 2010;15(2):135-147. doi:10.1007/s10911-010-9179-8.
    11. Teng Y, Li X. The roles of HLH transcription factors in epithelial mesenchymal transition and multiple molecular mechanisms. Clin Exp Metastas. 2014;31(3):367-377. doi:10.1007/s10585-013-9621-6
    12. Mallak AJ, Abbaszadegan MR, Khorasanizadeh PN, Forghanifard MM. Contribution of EVX1 in Aggressiveness of Esophageal Squamous Cell Carcinoma. Pathol Oncol Res. 2015;22(2):341-347. doi:10.1007/s10585-013-9621-6
    13. Sobin LH GM, Wittekind C, editors TNM classification of malignant tumours. 2011
    14. Khales SA AM, Abdollahi A, Raeisossadati R, Tousi MF, Forghanifard MM. SALL4 as a new biomarker for early colorectal cancers. J Cancer Res Clin Oncol. 2015;141(2):229-235. doi:10.1007/s00432-014-1808-y
    15. Khales SA, Abbaszadegan MR, Majd A, Forghanifard MM. Linkage between EMT and stemness state through molecular association between TWIST1 and NY-ESO1 in esophageal squamous cell carcinoma. 2019;163:84-93. doi:10.1016/j.biochi.2019.05.016
    16. Pearson GW. Control of invasion by epithelial-to-mesenchymal transition programs during metastasis. J Clin Med. 2019;8(5):646. doi:10.3390/jcm8050646
    17. Forghanifard MM KS, Farshchian M, Rad A, Homayouni-Tabrizi M, Abbaszadegan MR. . Negative regulatory role of TWIST1 on SNAIL gene expression. Pathol Oncol Res. 2016;23(1):85-90. doi:10.1007/s12253-016-0093-2
    18. Peng Y, Li Y, Li Y, Wu A, Fan L, Huang W, et al. HOXC10 promotes tumour metastasis by regulating the EMT-related gene Slug in ovarian cancer. Aging (Albany NY). 2020;12(19):19375. doi:10.18632/aging.103824
    19. Nunes FD, Almeida FCSd, Tucci R, Sousa SCOMd. Homeobox genes: a molecular link between development and cancer. Braz Oral Res. 2003;17(1):94-98. doi:10.1590/s1517-74912003000100018
    20. Scott MP. Vertebrate homeobox gene nomenclature. 1992;71(4):551-553. doi:10.1016/0092-8674(92)90588-4
    21. Zhang ML, Nie FQ, Sun M, Xia R, Xie M, Lu KH, et al. HOXA5 indicates poor prognosis and suppresses cell proliferation by regulating p21 expression in non small cell lung cancer. Tumour Biol. 2015;36(5):3521-3531. doi: 10.1007/s13277-014-2988-4
    22. Pilato B, Pinto R, De Summa S, Lambo R, Paradiso A, Tommasi S. HOX gene methylation status analysis in patients with hereditary breast cancer. J Hum Genet. 2013;58(1):51-53. doi:10.1038/jhg.2012.118
    23. Truong M, Yang B, Wagner J, Kobayashi Y, Rajamanickam V, Brooks J, et al. Even-skipped homeobox 1 is frequently hypermethylated in prostate cancer and predicts PSA recurrence. Br J Cancer. 2012;107(1):100-7. doi:10.1038/bjc.2012.216
    24. Rodrigues MF, de Oliveira Rodini C, de Aquino Xavier FC, Paiva KB, Severino P, Moyses RA, et al. PROX1 gene is differentially expressed in oral cancer and reduces cellular proliferation. Medicine. 2014;93(28). doi:10.1097/md.0000000000000192
    25. Bell CC, Amaral PP, Kalsbeek A, Magor GW, Gillinder KR, Tangermann P, et al. The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation. Sci Rep. 2016;6(1):1-11. doi:10.1038/srep26657
    26. Naora H MF, Chai CY, Roden RB. Aberrant expression of homeobox gene HOXA7 is associated with müllerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci. 2001;98(26):15209-15214. doi:10.1073/pnas.011503998.
    27. Yoshida H, Broaddus R, Cheng W, Xie S, Naora H. Deregulation of the HOXA10 homeobox gene in endometrial carcinoma: role in epithelial-mesenchymal transition. Cancer Res. 2006;66(2):889-897. doi:10.1158/0008-5472.CAN-05-2828
    28. Bouard C, Terreux R, Honorat M, Manship B, Ansieau S, Vigneron AM, et al. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences. Nucleic acids res. 2016;44(11):5470-5489. doi:10.1093/nar/gkw334
    29. Loh C-Y, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. 2019;8(10):1118. doi:10.3390/cells8101118
    30. Vesuna F, van Diest P, Chen JH, Raman V. Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun. 2008;367(2):235-241. doi:10.1016/j.bbrc.2007.11.151
    31. Croset M, Goehrig D, Frackowiak A, Bonnelye E, Ansieau S, Puisieux A, et al. TWIST1 expression in breast cancer cells facilitates bone metastasis formation. J Bone Miner Res. 2014;29(8):1886-1899. doi:10.1002/jbmr.2215
    32. Li B, Huang Q, Wei G-H. The role of HOX transcription factors in cancer predisposition and progression. 2019;11(4):528. doi:10.3390/cancers11040528
    33. Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med. 2014;92(8):811-823. doi:10.1007/s00109-014-1181-y
    34. Du YC, Oshima H, Oguma K, Kitamura T, Itadani H, Fujimura T, et al. Induction and down-regulation of Sox17 and its possible roles during the course of gastrointestinal tumorigenesis. Gastroenterology. 2009;137(4):1346-1357. doi:10.1053/j.gastro.2009.06.041
    35. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22(1):90-106. doi:10.1038/cr. 2011.144
    36. Castanon I, Von Stetina S, Kass J, Baylies MK. Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. 2001;128(16):3145-3159. doi:10.1242/dev.128.16.3145
    37. Fan X, Waardenberg AJ, Demuth M, Osteil P, Sun JQ, Loebel DA, et al. TWIST1 homodimers and heterodimers orchestrate lineage-specific differentiation. Mol Cell Biol. 2020;40(11). doi:10.1128/MCB.00663-19
    38. Ozdemir A, Fisher-Aylor KI, Pepke S, Samanta M, Dunipace L, McCue K, et al. High resolution mapping of Twist to DNA in Drosophila embryos: Efficient functional analysis and evolutionary conservation. Genome Res. 2011;21(4):566-577. doi:10.1101/gr.104018.109
    39. Papageorgis P. TGFβ signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. doi:10.1155/2015/587193
    40. Kalisz M, Winzi M, Bisgaard HC, Serup P. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression. Dev Biol. 2012;362(1):94-103. doi:10.1016/j.ydbio.2011.11.017
    41. Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, et al. Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling. J Cell Sci. 2007;120(8):1350-1357. doi:10.1242/jcs.000067
    42. Funa NS SK, Lerdrup M, Ekberg J, Hess K, Dietrich N, Honoré C, Hansen K, Semb H. β-Catenin regulates primitive streak induction through collaborative interactions with SMAD2/SMAD3 and OCT4. Cell Stem Cell. 2015;16(6):639-652. doi:10.1016/j.stem.2015.03.008