TY - JOUR ID - 129281 TI - Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique JO - Iranian Journal of Biotechnology JA - IJB LA - en SN - 1728-3043 AU - Qiaoyun, Weng AU - zhao, yanmin AU - Zhao, Yanan AU - song, xiaoqing AU - Yuan, Jincheng AU - Liu, Yinghui AD - College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, China AD - Zhangjiakou radio &TV University, Zhangjiakou 075000,China Y1 - 2021 PY - 2021 VL - 19 IS - 1 SP - 106 EP - 120 KW - iTRAQ KW - Maize seedlings KW - Proteomic analysis KW - Quantitative Real-Time PCR KW - salt stress DO - 10.30498/IJB.2021.2512 N2 - Background: Soil salinity is a major abiotic stress that limits plant growth and yield worldwide. Objective: To better understand the mechanism of salt stress adaptation in maize (Zea may), proteomic analysis of maize responses to salt stress were analyzed in seedling. Materials and Methods: Taking maize seedlings untreated and treated with NaCl for 24 h as material, isobaric tags for relative and absolute quantitation (iTRAQ) were used to analyze the protein expression profile of maize seedlings after salt stress. Results: The result showed that 270 differentially expression proteins (DEPs) were identified in maize seedlings after salt stress.The majority proteins had functions related to translation, ribosomal structure and biogenesis (15%), posttranslational modification, protein turnover, chaperones (14%) and others metabolism. Quantitative real-time PCR analysis showed that the EF-Tu, peroxiredoxin, FoF1-type ATP synthase, glutamate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, Acetyl-CoA acetyltransferase and nucleoside diphosphate kinase genes were up-regulated in the adaptation of maize to salt stress. Conclusions: The coped with salt stress of maize seedlings might be included nitrogen and glutamate (Glu) metabolism and energy homeostasis, nucleotide transport and metabolism, soluble sugar, fatty acid and nucleoside triphosphates synthesis. Moreover, the enhancement of plant to scavenge ROS, such as peroxiredoxin, might play significant roles in the adaptation of maize to salt stress.Taken together, these proteins might have important roles in defense mechanisms against salt stress in maize.We hope that this study provides valuable information for the further utilization and study on the molecular mechanisms of defense mechanisms in maize. UR - https://www.ijbiotech.com/article_129281.html L1 - https://www.ijbiotech.com/article_129281_1bf72cde8268f3a1d63e10b16674978d.pdf ER -