TY - JOUR
ID - 114424
TI - Multiscale Simulation of Adsorption Based Microcantilever Biosensors for Radiation Exposure Effects
JO - Iranian Journal of Biotechnology
JA - IJB
LA - en
SN - 1728-3043
AU - Mollaei, Fouad
AU - Aliparast, Peiman
AU - Naghash, Abolghasem
AD - Aerospace Research Institute, Ministry of Science and Research and Technology, Tehran, Iran
AD - Aerospace Engineering Department, Amirkabir University of Technology, Tehran, Iran
Y1 - 2020
PY - 2020
VL - 18
IS - 2
SP - 92
EP - 100
KW - Adsorption
KW - Micro-Cantilever
KW - Molecular Dynamics
KW - Multi-scale
DO - 10.30498/ijb.2020.134636.2317
N2 - Background: This article is focused on biological measurements based on molecular interactions. The specific biomarker implemented for radiation biosensor is FLT3, which bears changes in the body regarding radiation exposure. Experimental results of sensing vancomycin verify the overall results of two steps of numerical methods for different scales.Objectives: The aim is to provide adequate modeling procedures to predict sensory data. Multiscale modeling is implemented to simulate molecular interaction and its consequent micro mechanical effects. The method is implemented to calculate surface traction of microcantilever biosensor.Materials and Methods: The method consists of molecular dynamics simulation of adsorption process by implementing classical mechanics theory to calculate the final response of the sensor as tip deflection. The sequential information transaction is assumed between the physical parameters of two governing scales. The numerical method consists of the location of particles providing for a nano-metric periodic boundary conditioned functionalized surface implemented, and the numerical thermodynamic formula is, in turn, use energy parameters to acquire macro-mechanical deflection of a specific microcantilever. Also, novel sensitivity analysis of the results as the adsorption process moves toward more saturated substrate provided.Results: Verification of the simulation method for Vancomycin sensing results enjoys less than 20 percent of deviation regarding the experimental data. The standard deviation of 0.054 in the final expected response of the sensor is calculated as the accuracy of the radiation biosensor based on FLT3.Conclusions: The method is still to reach a correlation between the concentration of target molecules in solution and the number of adsorbed molecules per area of the sensor. A scaled correlation between sensorâ€™s response and the amount of biomarker is found using tip deflection of a sample designed microcantilever. Around one micrometer deflection that can be read out using various conventional methods was observed at saturation of adsorption surface. The analyses provide adequate data to design a sensor capable of measuring the effect of cosmic radiation to the human body.
UR - http://www.ijbiotech.com/article_114424.html
L1 - http://www.ijbiotech.com/article_114424_f6abe643cb4db14f928be404d74daa06.pdf
ER -