@article { author = {Modiri, Sima and Kasra Kermanshahi, Rouha and Soudi, Mohammad Reza and Dad, Navid and Ebadi, Mozhgan and Shahbani Zahiri, Hossein and Akbari Noghabi, Kambiz}, title = {Growth Optimization of Lactobacillus acidophilus for Production of Antimicrobial Peptide Acidocin 4356: Scale up from Flask to Lab-Scale Fermenter}, journal = {Iranian Journal of Biotechnology}, volume = {19}, number = {3}, pages = {10-19}, year = {2021}, publisher = {National Institute of Genetic Engineering and Biotechnology of Iran}, issn = {1728-3043}, eissn = {2322-2921}, doi = {10.30498/ijb.2021.218725.2686}, abstract = {Background: Antibiotic-resistant bacteria are a major threat to global health. Older antibiotics have become more or less ineffective as a result of widespread microbial resistance and an urgent need has emerged for the development of new antimicrobial strategies. Acidocin 4356 is a novel antimicrobial bacteriocin peptide produced by Lactobacillus acidophilus ATCC 4356 and capable of confronting the Pseudomonas aeruginosa ATCC 27853 infection challenges. According to our previous studies, the production of Acidocin 4356 is in parallel with cellular biomass production.Objectives: Given the costly production of Acidocin 4356, the development of a beneficial approach for increasing productivity of the cellular biomass has been targeted in the lab-scale fermenter for scale-up production of this bacteriocin. Therefore, in this study, we developed an inexpensive optimal culture medium based on the whey feedstock, evaluating this medium for scaling-up of the bacteriocin production from flask to fermenter.Material and Methods: In the first step, the optimization of the process parameters and medium components was carried out using the Plackett-Burman (PB) design and Response surface methodology (RSM) in flask culture. After optimization of the medium, bacteriocin production in the optimum culture medium was compared with de Man, Rogosa and Sharpe (MRS) medium by analyzing the intensity of the peptide band. Intensity analysis has been conducted on the PAGE band of the peptide using Image J software. Finally, the scale- up of bacteriocin production in the optimum culture medium was evaluated by batch fermentation in a 3-liter fermenter.Results: In this study, a medium containing whey (40 g.L-1) and sodium acetate (5 g.L-1) was used as basal medium, and the effect of other factors were then evaluated. According to the PB design, three factors of peptone concentration, yeast extract concentrations and cultivation temperature were selected as the most effective factors which improve the growth of L. acidophilus. The condition providing the highest growth capacity for bacteriocin production were predicted based on the results of RSM as following: temperature 40 ° C, yeast (4 g.L-1), and peptone (8 g.L-1). Finally, the dry cell weight was obtained after incubation for 12 h as 2.25 g.L-1. Comparison of cell growth and bacteriocin production between MRS medium and optimized medium confirmed the efficacy of these optimal conditions for the cost-effective production of Acidocin 4356 in the flask. Besides, the scale- up of bacteriocin production has made under optimal condition in the 3-L fermenter.Conclusions: In this study, for the first time, scale- up production of Acidocin 4356 was presented by using a low-cost method based on whey feedstock to tackle P. aeruginosa infections. }, keywords = {Acidocin 4356,Antimicrobial peptide (AMP),Batch fermentation,Lactobacillus acidophilus ATCC 4356,Plackett-Burman (PB) design,Pseudomonas aeruginosa infections,Response surface methodology (RSM) design}, url = {https://www.ijbiotech.com/article_135087.html}, eprint = {https://www.ijbiotech.com/article_135087_f45de54cd4a13d31ef92258f153322bf.pdf} }