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Background: The utilization of methane for production of Poly-β-hydroxybutyrate (PHB) not only cuts the emissions 
of greenhouse gases but also greatly reduces PHB production cost. 
Objectives: The aim of this study was to determine the effects of gas-phase conditions on PHB production by 
Methylosinus trichosporium OB3b. 
Materials and Methods: Bacterial cultivation and PHB production were conducted in a series of sealed serum bottles. 
Nitrogen-free mineral salts medium was used to induce PHB production in the presence or absence of N2 in the 
headspace. 
Results: In the absence of N2, the highest PHB content (i.e., 52.9% of the dry cell weight with a PHB concentration of 
814.3 mg.L-1) was obtained at a ratio of CH4:O2=2:1. Further study at different O2 concentrations with a fixed CH4 
partial pressure in absence of N2 showed that PHB accumulation by methanotroph could be tolerated high oxygen 
partial pressure and its respond to the variation of the oxygen concentration depends on the methane partial pressure. 
In presence of N2, with headspace gas replenished only when oxygen was almost depleted, the degradation of 
intracellular PHB has appeared. In the regimen of updating headspace gas at the point when the PHB content began to 
decrease, the highest PHB content (i.e., 55.5% of the dry cell weight with 901.8 mg.L-1 PHB concentration and 12.5 
mg.L-1.h-1PHB productivity) was obtained at 0.2 atm O2 and PHB accumulation was depressed with an oxygen 
concentration greater than 0.3 atm. 
Conclusions: The methanotroph responses differentially to the increase in the oxygen partial pressure with regard to 
PHB accumulation either in the presence or in the absence of N2. 
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1. Background
Polyhydroxyalkanoates (PHAs) have attracted an 
increasing attention as an alternative to the traditional 
plastics, among which Poly-β-hydroxybutyrate (PHB) is 
the most widely studied and best-characterized 
homopolymer (1). However, the expansion of PHB 
utilization has been restrained due to their high 
production cost. Consequently, many research groups 
have devoted themselves to the development of the 
inexpensive feedstock and low-cost extraction methods. 
Techno-economic studies have shown that 
approximately 30-50% of the PHB production cost is 
mainly attributed to the expensive carbon sources (2). 
So, it could be greatly reduced if the waste organic 
carbon is used as an inexpensive and renewable 
feedstock, such as H2, methanol and cane molasses (1, 
3-7). Methane, which is abundantly available during 

fossil fuels extraction and organic waste of the anaerobic 
degradation process, accounts for 20% of the worldwide 
greenhouse gas (GHG) emissions (8)and the global 
atmospheric methane ratio is increasing at an annual 

average of 1%(9) . Although some measures have to be 
taken in order to increase methane solubility and 
eliminate the possibility of the explosion during PHB 
production from methane, it has been estimated that 
using waste methane as feedstock might reduce the cost 
of PHB by approximately 30-35%(10). As well, PHB 
production from biogas discharged by the existing 
landfills and anaerobic digesters could theoretically 
replace 20-30% of the total plastics annual market (11). 
Methanotrophs, which utilize methane as the sole 
carbon source, mainly consist of two groups, type I and 
II, with different pathways, the ribulose monophosphate 
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(RuMP) pathway and the serine pathway, to complete 
carbon assimilation (12). PHB production has been 
reported to be restricted to type II genera (13), among 
which Methylocystis and Methylosinus are the most 
documented. Both methane and oxygen are important 
for methanotrophs (2)and variations of their partial 
pressure are likely to affect the activities and 
metabolisms of the methanotrophs. PHB are generally 
synthesized by microorganism under nutrient-limiting 
conditions and are consumed as a source of reducing 
equivalent under nutrient-sufficient conditions (12). 
Nitrogen deficiency is one of the most common ways to 
trigger the accumulation of PHB (14). The ability to fix 
molecular nitrogen has been reported to present in all 
type II genera (13). Methanotrophs can utilize N2 as a 
sole nitrogen source for growth (15). It has been 
reported that Methylosinus trichosporium OB3b grew 
slowly and accumulated about 6% PHB under N2-fixing 
conditions (16). Shah et al. suggested that only 10% 
PHB was produced by M. trichosporium OB3b when the 
mixtures of methane and air were supplied as substrate. 
However, after air was switched to pure oxygen with the 
same oxygen flux, the content of PHB was increased to 
45% (17). It is obvious that the presence of N2 could 
affect the PHB accumulation of the methanotrophs. 
Nevertheless, the accumulation of PHB by 
methanotrophs is always stimulated by removing the 
liquid medium nitrogen source in the previous studies 
(9, 13-15, 17). There is a little detailed-information on 
the impact of N2 on PHB production by 
methanotrophs. 
In addition, whether methane is collected from natural 
gas or biogas, it is inevitable that some N2 would be 
introduced and the purification is costly. So, it is 
meaningful to examine how N2 affects the PHB 
synthesis ability of the methanotrophs. It has been 
suggested that nitrogenase activity of the 
methanotrophs is sensitive to the oxygen partial 
pressure (13, 15-18). Therefore, the effect of N2 on the 
PHB synthesis ability of methanotrophs is probably O2-
dependent. If a high content of PHB could also be 
produced in the presence of N2, the requirement for the 
purity of the methane and oxygen would be greatly 
reduced. As a result, the PHB production cost attributed 
to the substrate could be further reduced. 

2. Objectives
In order to determine how PHB production of M. 
trichosporium OB3b was affected by the gas-phase 
conditions in the absence and presence of N2 and 
explore the possibility of accumulating high content 
PHB in presence of N2, this study was performed in two 
steps. Firstly, it was investigated how PHB accumulation 
of methanotroph was affected by the variations of the 
oxygen and methane partial pressure in the absence of 
N2, and secondly, the effect of the presence of N2 on 
PHB synthesis was evaluated at different oxygen 

concentrations in two different headspace gas 
replenishment regimes. 

3. Materials and Methods 

3.1. Microorganisms and Culture Conditions 
M. trichosporium OB3b was kindly provided by M. 
Kalyuzhnaya (Lidstrom laboratory, University of 
Washington) and used throughout this study. M. 
trichosporium OB3b was cultivated in the nitrate minimal 
salt (NMS) containing (per liter) KH2PO4 0.272 g, 
Na2HPO4·12H2O 2.868 g, KNO3 0.10 g, MgSO4·7H2O 
0.10 g, CaCl2·6H2O 0.20 g and 2 mL of trace element 
solutions. The trace element solution was composed of 
(per 100mL): Na-EDTA 25 mg; FeSO4·7H2O 50 mg; 
Fe-EDTA 38 mg; ZnSO4·7H2O 40 mg; Cu-EDTA 10 
mg; H3BO3 1.5 mg; MnCl2·4H2O 2 mg; 
Na2MoO4·2H2O 26 mg; CuCl2·2H2O 30 mg; 
NiCl2·6H2O 1 mg; CoCl2·6H2O 5 mg. The initial pH of 
the medium was adjusted to 6.8 applying 1 M sodium 
hydroxide (19). An amount of 100 mL of the NMS 
medium and 5 mL of culture inoculums was introduced 
into a series of 300mL serum bottles which were capped 
with butyl rubber stoppers and screw top. Cultures were 
grown at 30 °C on the orbital shakers at 150 rpm under
a CH4/O2 gas mixture (1:1, v/v). Headspace gas was 
replenished every 24 h by being subjected twice to the 
vacuum and replenished with the same gas mixture
(CH4/O2 at a ratio of 1:1 v/v) to maintain a sufficient 
amount of the oxygen. The cell growth was monitored 
by measuring the gaseous composition in the headspace 
along with monitoring the optical density at 660 nm (V-
560, Jasco International Co., Ltd., Japan) which was 
correlated with dry cell mass measured after 
lyophilizationfor 24 h. 

3.2. PHB Production Studies 
The nitrogen-free mineral salts (NFMS) medium, 
which was identical to NMS medium except for the 
addition of 0 mM KNO3 to NFMS medium, was used to 
induce PHB production. Cell suspensions were 
harvested after about 5 d post-cultivation, washed twice 
with NFMS medium, and re-suspended in NFMS 
medium (OD660 of 1.5±0.05). Where after, the cell re-
suspension solution was divided by transferring15 mL 
aliquots into a series of the 125 mL serum bottles. The 
serum bottles were capped with butyl rubber stoppers 
and screw top 
The effect of the gas-phase conditions on the PHB 
production were first conducted without N2, in which 
the headspace gas was renewed at every 24 h for 72 h to 
ensure the sufficient gas substrates. To study the effect 
of the applied ratio of the methane to that of oxygen at a 
constant pressure and in the absence of N2, the 
headspace gas was refreshed by being subjected to the 
vacuum twice, replenished with a mixture of the 
methane and oxygen (CH4/O2; at the ratio of 3:1, 2:1, 
1:1, 1:2, and 1:3 v/v, respectively) to restore an ambient 
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atmospheric pressure. To elucidate the effect of 
different oxygen concentrations at a pressure of 0.5 atm 
CH4 without N2, the headspace was first vacuumed, then 
methane was fed to a partial pressure of 0.5 atm followed 
by the addition of oxygen with the different partial 
pressures (oxygen partial pressure = 0.25, 0.33, 0.5, 0.67, 
and 0.75 atm, respectively). At last, helium was added to 
make sure that the same total pressure was reached in 
each bottle. The replenishment operation was repeated 
twice each time. In addition, the oxygen concentration 
effect (i.e., 0.2-0.6 atm, respectively) on PHB 
production was also conducted at 0.2 atm CH4 to 
explore whether it was varied at the different methane 
concentrations. 
For demonstrating the coupled effect of molecular 
nitrogen as well as different oxygen concentrations on 
PHB synthesis in two different headspace gas 
replenishment regimes, the headspace was first 
subjected to the vacuum, then methane was fed to the 
headspace at a partial pressure of 0.5 atm, oxygen at the 
partial pressure ranging from 0.1atmto 0.5 atm, and 
helium was added to restore an ambient atmospheric 
pressure. At last N2 was fed to the headspace at a 
pressure of 0.3 atm applying a gas-tight syringe. In the 
first replenishment regimen, the headspaces gas was 
refreshed when the concentration of oxygen was below 
5% (v/v). In the other regimen, the headspace gas was 
renovated every 12 h to inhibit the degradation of 
intracellular PHB. 
All serum bottles were incubated at 30 °C on the orbital 
shakers at 150 rpm. The initial gaseous compositions 
were determined and the variations were monitored 
periodically. Duplicate serum bottles were sacrificed 
periodically for 72 h. The 10 mL cell suspensions were 
subjected to the centrifugation at 4 °C, washed twice 
with deionized water, lyophilized, and weighed before 
analysis of PHB. 

3.3. Analytical Methods 
The percent PHB was analyzed by a gas 
chromatography (GC7890 II, Techcomp limited, 
China) equipped with a flame ionization detector (FID) 
after digestion of the freeze-dried cell pellets (20). The 
headspace gas composition was determined by a gas 
chromatography (GC7900, Techcomp limited, China) 
equipped with a thermal conductivity detector. As well, 
statistical analyses were performed by PASW statistics 
release 18.0.0 (SPSS Inc., Chicago, Illinois). Spearman’s 
rank correlation test was employed to determine the 
significance. ρ represents Spearman’s correlation 
coefficient, n represents the number of points used, and 
Prepresents the significance. 

4. Results

4.1. PHB Production with Different Ratios of 
Methane to Oxygen at Constant Pressure in the 
Absence of N2 

The changes of the percent PHB at different CH4:O2 
ratios are illustrated in Figure 1. There was no obvious 
distinction in the PHB content among each ratio of 
methane to oxygen in the first 24 h. After that, a PHB 
content of CH4:O2 = 1:3 was the first to reach a plateau 
with a maximal PHB content of 35.2%, successively 
followed by CH4:O2 = 1:2 (40.7%), CH4:O2 = 3:1 
(44.4%), CH4:O2 = 1:1 (49.5%), and CH4:O2 = 2:1 
(52.9%). It was obvious that with an increase in CH4:O2 
ratio from 1:3 to 2:1, gradually a higher maximal PHB 
content was obtained. Afterwards, the maximal content 
of PHB was decreased when the ratio was further 
increased to 3:1 (ρ = 0.689, n = 10, P = 0.027). The 
maximal PHB concentration and PHB productivity at 
CH4:O2 = 2:1 were 814.3 mg.L-1 and 11.3 mg.L-1.h-1 

respectively. 

4.2. PHB Synthesis with Different Oxygen 
Concentrations at the Fixed Methane Partial 
Pressures in Absence of N2 
In order to determine how oxygen partial pressure 
influences PHB production of the methanotrophs, the 
experiments were conducted at the two different 
methane partial pressures. Figure 2 presents the 
variations of PHB content with different oxygen dosages 
at 0.5 atm of CH4. It is noteworthy that the PHB 
synthesis ability of the Methylosinus trichosporium 
OB3b was limited at 0.25 atm O2. When oxygen partial 
pressure was successively increased to 0.33, 0.5, 0.67 and 
0.75 atm, the maximal contents were 41.5%, 48.9%, 
51.5% and 52.3%, respectively. The accumulation of 
PHB was promoted by the higher oxygen concentration 
(ρ = 0.886, n = 10, P = 0.001). When the partial pressure 
of the oxygen was as high as 0.75 atm the conditions was 
still favorable for PHB synthesis, showing no inhibition. 
The PHB production at 0.2 atm CH4 is illustrated in 
Figure 3. Similarly, the PHB accumulation of the 
methanotroph was also limited at low oxygen 
concentration (0.2 atmO2). However, unlike the tests 
with 0.5 atm CH4, the bacteria accumulated a higher 
content of PHB at 0.3 (38.2%) and 0.4 atm O2 (40.9%) 
(ρ = 0.837, n = 6, P = 0.038) and the maximal PHB 
content was greatly decreased by 26.4% when oxygen 
partial pressure was further increased to 0.6 atm. It was 
obvious that PHB production of the methanotroph was 
strongly dependent on the oxygen concentration and 
the response to the variation of the oxygen 
concentration varied at different methane partial 
pressures, accordingly.  

4.3. Coupled Effects of Molecular Nitrogen and 
Different Oxygen Concentration on the PHB 
Synthesis in two Different Headspace Gas 
Replenishment Regimens 
In the first headspace gas replenishment regime, the 
headspace gas was refilled only when oxygen was almost 
depleted. The intracellular PHB contents in this 
regimen along with oxygen consumption curve are 
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plotted in Figur 4a and 4b. For an oxygen partial 
pressure of 0.1 atm, PHB content reached the plateau in 
7h with a value of 5.5%. After the first oxygen 
supplement at 15.5h, the percent PHB value first 
increased gradually to 9.2% and then decreased slightly 
with the consumption of oxygen. Likewise, after the 
second oxygen supplement, the increase and decrease 

cycle of the PHB content was observed again. The 
similar behaviors were also observed at 0.2 and 0.3 
atmO2, as well. When the oxygen partial pressures were 
0.4 and 0.5 atm (no headspace gas refreshment was 
performed), the PHB content was also increased at first 
and the maximal PHB content was obtained at 15.5h. 
But, afterward, the PHB level was decreased. 

Figure 1. The time course of the percent PHB with the different ratios of the methane to the oxygen at constant pressure in the absence of N2. 

Figure 2. The profiles of the cellular PHB content at different oxygen concentrations with 0.5 atm CH4 in the absence of N2. 
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Figure 3. The time course of the percent PHB at different oxygen concentration with 0.2 atm CH4 in the absence of N2. 

Figure 4. (A) The graph representing the variation in the percent PHB and (B) changes in the oxygen partial pressure in the presence of N2. 0.5 atm 
CH4, 0.3 atm N2 and different concentration of the O2 were introduced and the headspace was refreshed only when oxygen was almost depleted. 
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on PHB synthesis were observed. The highest maximal 
percent PHB value (55.5%) was obtained at 0.2 atm O2. 
The decrease in the maximal PHB content occurred 
when oxygen concentration was successively increased 
to 0.5 atm as observed in the following pattern: 0.3 
atmO2 (47.0%) > 0.4 atm O2 (45.9%) > 0.5 atm 
(37.3%). Then, the maximal PHB content slightly 
increased to 40.7% when oxygen concentration was 
further increased to 0.7 atm (ρ = -0.086, n = 10, P = 

0.001). The inhibition of the higher concentration 
oxygen on PHB synthesis of the methanotroph 
appeared at 0.5 atmCH4in the presence of N2. Table 1 
provides details of the maximal PHB concentration and 
PHB productivity obtained in the regimen of refreshed 
headspace gas every 12 hours. It is noteworthy that the 
highest PHB concentration of the 901.8 mg.L-1 was 
obtained at 0.2 atm O2 with a PHB productivity of 12.5 
mg.L-1.h-1. 

Table 1. The maximal PHB concentration and PHB productivity obtained in the regimen of the renovating headspace every 12 h in presence of N2. 

Oxygen concentration (atm) Maximal PHB concentration (mg.L-1) PHB productivity (mg.L-1.h-1) 

0.20 901.8 ± 21.3 12.5 ± 0.3 
0.30 652.1 ± 31.4 9.1 ± 0.4 
0.40 623.1 ± 24.1 8.7 ± 0.3 
0.50 443.5 ± 19.1 6.2 ± 0.3 
0.70 507.7 ± 23.8 7.1 ± 0.3 

Figure 5. The effect of the oxygen concentration on PHB accumulation with headspace replenished every 12 h in the presence of N2. The initial 
headspace was consisted of the 0.5 atm CH4, 0.3 atm N2 and different concentration of O2. 

5. Discussion
The PHB accumulation was first conducted with 
different ratios of the methane to the oxygen in the 
absence of N2. It has been reported that methanotrophs 
prefers to grow at the level where both oxygen and 
methane are completely consumed (21). It has been 
calculated that the molar ratio of the consumed methane 
and oxygen consumed is equal to 1:1.5 in theory (22). 
In PHB production phase, the higher maximal PHB 
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acids (VFAs) that, an excess exogenous carbon source is 
favorable for the intracellular PHA accumulation of the 
activated sludge (23). 
At a fixed methane partial pressure without N2, the data 
indicated that limiting O2 concentration negatively 
affected the PHB accumulation of the methanotrophs, 
which was also verified previously (2). So, it is important 
to ensure adequate oxygen pressure during the 
accumulation of the PHB. On the other hand, it seems 

that an overdose of oxygen might depress PHB synthesis 
of the methanotroph and the oxygen partial pressure 
that inhibited PHB production perhaps varied at 
different methane partial pressure, as well. It has been 
reported that with oxygen concentrations increasing 
from 20% to 60%, the methane oxidization rate was 
reduced by more than 23% for both types I and II 
methanotrophs (24). Henckel et al. reported that 
responses of the methane oxidation of the rice field soil 
to the increased oxygen concentration varies at high and 
low methane concentration, which is consistent with the 
phenomenon observed in this test (25). It has been 
reported that the molar ratio of the methane to that of 
oxygen should be maintained at a ratio ≥ 1:2 for an 
improved methane oxidation (26). In tests with 0.5 atm 
CH4, the CH4:O2 ratio was maintained at a ratio ≥ 1:1.5 
and the maximal PHB content was gradually increased 
with an increased oxygen con centrations. However, in 
the tests with 0.2 atm CH4, when the oxygen partial 
pressure was increased to 0.6 atm (CH4:O2=1:3), the 
maximal PHB content was indeed significantly 
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decreased. Therefore, the lower PHB content of 
CH4:O2=1:3 was likely to be mainly caused by the 
inhibition of excess oxygen. 
In the presence of N2, with the headspace gas 
replenished only when oxygen was almost depleted, 
PHB was accumulated and degraded cyclically. It has 
been reported that with the different mixture of the 
methane and air as the gaseous substrate flow, once 
nitrate was exhausted, the percent value of PHB was 
improved apparently at first and then followed by a 
gradual reduction which was in agreement with the 
phenomenon presented in these investigations (17). It 
has been observed that only slow growth of the 
methanotrophs was performed with N2 as a sole 
nitrogen source when compared with the nitrate- or 
ammonium-supplied bacteria (15), which indicated 
that N2 could only provide a limited source of nitrogen. 
It seems that regardless of the oxygen partial pressure, 
the sudden removal of nitrate would result in a relative 
lack of nitrogen source and stimulates PHB 
accumulation at the beginning even though N2 was 
added as a nitrogen source. It has been demonstrated 
that Type II methanotrophs have a complete 
tricarboxylic acid (TCA) cycle, which can utilize acetyl 
CoA produced from PHB degradation as the substrate 
to produce reducing equivalents (13). On the other 
hand, it is well known that a reducing equivalent is 
required in the process of energy-intensive N2 fixation 
(27). Moreover, type II nitrogenase of the 
methanotrophs has been reported to tolerate an oxygen 
partial pressure up to 28% (28). Therefore, the 
degradation of PHB might be used as a source of 
reducing power to assimilate N2.  
When compared with PHB productions at 0.5 atm CH4 
without N2, the maximal PHB content of 0.2 atm O2 was 
significantly improved in the presence of N2 with the 
headspace replenished every 12 h, which was likely 
attributed to the limited nitrogen source provided by the 
N2 fixation. A kinetic study of the PHB production by 
Protomonas extorque revealed that a nitrogen source 
was necessary, not only in the growth phase but also in 
the PHB production phase, as well (29). It was reported 
that the PHB accumulation of a recombinant 
Escherichia coli was improved significantly when a small 
quantity of the complex nitrogen source was added 
(30). With oxygen concentration progressively 
increasing to 0.7 atm, the maximal PHB content 
decreased obviously in the presence of N2, which was so 
different from results observed at 0.5 atm CH4 in the 
absence of N2. It has been observed that the response of 
the methane oxidation to the increase of the oxygen 
concentration under N2-fixing condition was opposite 
to that under nitrate-supplied conditions, which was 
supposed to be due to the effect of nitrogen metabolism 
on carbon metabolism (31). So, the reverse effects of 
oxygen partial pressure on PHB production between 
tests in the presence and in the absence of N2 at 0.5 atm 

CH4 might be attributed to the variations of the carbon 
metabolism. 
In conclusion, both in the presence and in the absence 
of N2, the maximal PHB content of M. trichosporium 
OB3b could reach a high value. The responses of PHB 
accumulation of methanotroph to oxygen partial 
pressures in the absence of N2 were opposite to that in 
the presence ofN2. The production of high content PHB 
in the presence of N2 would greatly reduce the 
requirement for the purity of the methane and pure 
oxygen could also be substituted by the air, leading to a 
further reduction in the PHB production cost.  
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