
Abstract
Nowadays, the clustering of proteins and enzymes in
particular, are one of the most popular topics in bioin-
formatics. Increasing number of chitinase genes from
different organisms and their sequences have been
identified. So far, various mathematical algorithms for
the clustering of chitinase genes have been used but
most of them seem to be confusing and sometimes
insufficient. In the present study, as a first step, differ-
ent amino acids participating in panoply of chitinases,
as a model protein, obtained from the NCBI GenBank,
were digitized. Digitized data were normalized to the
signal energy. Normalized data decomposed using
mother wavelet bior 5.5 to approximation (a1) and
details (d1), at the first level. Corresponded coefficients
have been obtained and cross correlation between
normalized, a1 and d1 coefficients of amino acid
sequences were calculated. Maximum correlation was
selected as similarity index and corresponded clado-
gram trees were made. The results of this study
showed that more optimal and reliable cladogram tree
can be produced and better discrimination observed
from d1 coefficients compared to normalized
sequences and opposed to a1 coefficients. Using sug-
gested approach, the cladogram tree made from d1
coefficients not only had more validity but also the
drawback of the classic cladogram tree has been
improved.
Keywords: Enzyme clustering; Cladogram tree;

Mother wavelet; Signal processing; Correlation  

INTRODUCTION

Proteins are the most fundamental substance of life, as

they are the key component of the protoplasm of all

cells. Enzymes, hormones, transcription factors,

pumps and antibodies are examples for the diverse

functions fulfilled by proteins in a living organism.

There are only 20 different types of amino acids, and

they can be combined to generate an infinite number of

sequences. In reality, only a small subset of all possi-

ble sequences appears in nature. The three important

attributes of enzymes:  are sequence, structure, and

function. The sequence is essentially the string of

amino acids which comprises the enzymes (Seckbach

and Rubin, 2004). 

Increasing number of enzyme encoding genes

from different organisms and their sequences have

been identified. The clustering of enzyme is one of the

most popular topics in bioinformatics nowadays. The

goal of clustering is to identify distinct groups in a data

set and assign a group label to each observation.

Observations are partitioned into subsets or clusters,

such that observations in one subset are most similar to

each other than to observations in different subsets

(Bang et al., 2010). 

There are a wide array of clustering approaches,

each with its strengths and weaknesses. Nugent and
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Meila (Edited by Bang et al., 2010) have been present-

ed an overview of clustering method applied in molec-

ular biology. Basically, there are two type of cluster-

ing: Attribute base (e.g., K-mean, K-medoids, Model-

based, Nonparametric, Simple mean shift, Gaussian

blurring mean shift, Dirichler mixture model and

Biclustering) and similarity base (e.g., Hierarchical,

Spectral and Affinity propagation). 

Zainuddin and Pauline applied various clustering

algorithms, namely, K-means (KM), Fuzzy C-means

(FCM), symmetry-based K-means (SBKM), symme-

try-based Fuzzy C-means (SBFCM) and modified

point symmetry-based K-means (MPKM) clustering

algorithms in choosing the translation parameter of a

WNN (Zainuddin and Pauline, 2010). 

Two clustering methods named NJ and UPGMA in

ClustalW program can be performed. The default

method in this internet base program is neighbor-join-

ing (NJ). These methods used to construct the phylo-

genetic tree: NJ: Neighbor-joining (Saitou and Nei,

1987) and UPGMA: Un-weighted Pair Group Method

with Arithmetic Mean (Sneath and Sokal, 1973). The

UPGMA algorithm assumes equal rates of evolution,

so that branch tips come out equal. The Neighbor-

Joining algorithm allows for unequal rates of evolu-

tion, so that branch lengths are proportional to amount

of change. UPGMA assumes a constant rate of evolu-

tion and is not a well-regarded method for inferring

phylogenetic trees unless this assumption has been

tested and justified for the data set being used.

UPGMA was initially designed for use in protein elec-

trophoresis studies, but is currently most often used to

produce guide trees for more sophisticated phyloge-

netic reconstruction algorithms. NJ is a bottom-up

clustering method used for the construction of phylo-

genetic trees. Usually used for trees based on DNA or

protein sequence data, the algorithm requires knowl-

edge of the distance between each pair of taxa (Xavier,

2010; Murtagh, 1984). 

Chitin is the second most abundant, renewable

polysaccharide in nature after cellulose (Li, 2006;

Haki and Rakshit, 2003). Chemically, chitin is a β- (1-

4)-linked homopolymer of N-acetyl-β-D-glucosamine.

Chitin-degrading enzymes, chitinases, which

hydrolyze chitin, occur in a wide range of organisms

including viruses, bacteria, fungi, insects, higher

plants, invertebrate and vertebrate animals like

humans (Park et al., 1997). The roles of chitinases in

these organisms are diverse. 

Nomenclature of chitinolytic enzymes is confus-

ing and does not include all known enzymes with chiti-

nolytic activity. A sensible terminology which roughly

covers any enzymes that catalyze the cleavage of

chitin has been suggested by Lorito (1998). This termi-

nology differentiates chitinolytic enzymes based on

the reaction end-products. According to this nomen-

clature, chitinases can be divided into two major cate-

gories: endochitinases and exochitinases.

Endochitinases (EC 3.2.1.14) randomly cleave chitin

and chitooligomers at internal sites and release a mix-

ture of soluble low molecular mass end-products of

different size which are multimers of GlcNAc.

Exochitinases can be divided into two subcategories:

chitin 1, 4-β-chitobiosidases and β-N-acetylhex-

osaminidases. 

The classification of chitinolytic enzymes based

on the similarities of their amino acid has been pro-

posed (Henrissat, 1999). In this classification, the

structural features of enzymes have been combined

with their three-dimensional structures (Davies and

Henrissat, 1995) and chitinolytic enzymes were

grouped into families 18, 19 and 20 of glycosyl hydro-

lases (Henrissat and Bairoch, 1993). Family 18 chiti-

nases are found in bacteria, fungi, yeast, viruses, plant

and animals, and hence the family is varied in evolu-

tionary terms. Family 19 members are almost entirely

presented in plants. Family 20 consists of the β-N-

acetylhexosaminidases or β-N-acetylglucosaminidases

from bacteria, fungi and humans (Li, 2006). Therefore,

various mathematical algorithms for the clustering of

chitinase gene have been proposed but most of them

seem to be confusing and sometimes insufficient. They

basically make a simple cross correlation among anal-

ogous amino acid sequences for the gene from differ-

ent organisms which sometimes, the interpretation of

constructed cladogram is confusing and difficult. 

Signal processing approach is a novel tool for con-

structing the cladogram tree with more discrimination

power and higher accuracy. Huge amount of informa-

tion and sequencing data on chitinolytic enzyme-

encoding gene are available but in the present study we

only used amino acid sequences for the N-acetyl-β-D-

glucosaminidases gene from different organisms

which have been obtained from the NCBI gene bank. 

MATERIALS AND METHODS

Thirty amino acid sequences for the N-acetyl-β-D-glu-

cosaminidases gene from different fungi, plants and

animals which was already used in our previous publi-

cation (Mamarabadi et al., 2009), retrieved from the
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NCBI databases and used as a model protein in the

present investigation. The genes and other related

information are provided in Table 1. In the present

study three techniques for the signal processing of

amino acid sequence data were used which have been

explained briefly.

Wavelet decomposition: Since there are 20 types of

amino acids in protein sequences the number one to 20

have been allocated to digitize each particular amino

acid, respectively. For example the number one for A
(single letter code for Alanine), number 2 for C (single

letter code for Cysteine) and etc. Each digitized amino

acid sequence (DAS) forms a one dimensional data

(1D). Therefore a 1D wavelet approach has been used.

Eq. (1) defines a discrete wavelet transformer (DWT)

of a signal x(z) (Jin et al., 2008; Mallat, 1989;

Daubechies, 1988):

(1)

This function transforms signal x(z) using mother

wavelet Ψ(z) from DAS domain (z) to translation (τ)

and scale (s) domains. In Eq. (1), z-τ is the DAS trans-

lation. The term (√|s|)-1 is a normalization factor to

remove the scale effect from wavelets with different

scales.

Figure 1 shows the procedure of wavelet decom-

position. As this Figure shows, in the first step,

wavelet decomposes DAS into low and high frequen-

cy bands, which are called approximation (a1) and
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Sequence

Number

Organism Gene Accession Number

(retrieved from NCBI)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Trichoderma atroviride
Trichoderma virens

Paracoccidioides brasiliensis
Penicillium chrysogenum

Trichoderma virens
Aspergillus oryzae

Aspergillus nidulans
Trichoderma atroviride

Trichoderma asperellum
Candida albicans

Clonostachys rosea
Trichoderma asperellum

Paracoccidioides brasiliensis
Coccidioides posadasii
Coccidioides posadasii
Sclerotinia sclerotiurum

Cryptococcus neoforman
Magnaporthe grisea

Gibberella zeae
Gibberella zeae
Gibberella zeae

Metarhizium flavoviride
Metarhizium anisopliae

Ustilago maydis
Botryotinia fuckeliana

Bacillus subtilis
Rhizobium leguminosarum

Homo sapience
Caenorhabditis elegans

Arabidopsis taliana

Ta. nag2
Tv. nag2

Pb. pb- nag1
Pc. nagA
Tv.nag1

Ao. nagA
An. nagA
Ta. nag1
Ta. exc1y
Ca. hex1

Cr. cr-nag1
Ta. exc2y

Pb. pb- nag1
Cp. chit1
Cp. chit2

Ss. predicted protein
Cn. hex
Mg. hp
Gz. hp
Gz. hp
Gz. hp
Mf. chit
Ma. chit
Um. chit
Bf. hp

Bs. nag
Rl. hex
Hs. hex
Ce. hex
At. hex

AAT70229.1
AAL84701.1
AAL14649.1
AAF00010.1
AAL84700.1
BAC41255.1
BAB13330.1
CAC85401.1
CAC85402.1
AAA34346.2
ABC73393.1
ABC95196.1
AAK94334.1
ABB18373.1
ABU87865.1

XP_001592574.1
XP_571630.1
XP_363950.1
XP_382346.1
XP_382115.1
XP_381459.1
CAB44709.1
AAC33265.1
AAG35111.1

XP_001554078.1
BAA08089.1
CAK07535.1

P07686.3
CAO72175.2
NP_176737.2

Table 1. N-acetyl-β-D-glucosaminidases gene from different organisms.
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details (d1), respectively. In the second step, it decom-

poses a1 to low (a2) and high (d2) frequency bands.

This procedure can be continued for decomposing low

frequency bands to higher levels.

Normalization procedure: Normalization of DAS

data per DAS energy is a simple procedure as

described below:

Calculate DAS energy (EDAS) using Eq. (2):

(2)

Where n is the number of amino acids for each

sequence. 

Calculate normalized DAS (NDAS) using Eq. (3):

(3)

Where is normalized DASi for amino acid i. 

Auto and cross correlation: Cross correlation indi-

cates how much two amino acid sequences are similar

to each other statistically. In order to measure and
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quantify this, four following steps have to be down

(Yilmaz, 2001):

Reverse moving of first sequence

Multiply in the vertical direction

Add the product and write as output

Shift the second sequence to the right and repeat steps

b and c.

Cross correlation of an amino acid sequence with itself

is known as auto correlation. Cross and auto correla-

tion were performed on normalized DAS. The maxi-

mum correlation can be calculated as Eq. (4):

(4)

Therefore maximum cross correlation amount is a sim-

ilarity index between two amino acid sequences. So

that, when that amount is getting close to one, this

demonstrates high similarity between them.  

RESULTS 

In this section conventional cladogram trees and their

disadvantages and the results from signal processing

approaches for N-acetyl-β-D-glucosaminidases amino

acid sequence have been presented, respectively.

Drawback of conventional trees: Conventional

cladogram trees drawn for 30 different N-acetyl-β-D-

glucosaminidases amino acid sequences from different

organisms has been shown in Figure 2. The presented

cladogram was made using ClastalW program which

has some drawbacks. That means the interpretation of

these cladograms is sometimes difficult to explain. For

example in the following cases these problems could

be observed:

The case number 22 has to be located beside number

23, but in these cladograms it was located beside num-

ber 24. Number 22 and 23 are from the same genus

(Metarhizium) from Ascomycetous fungi, while num-

ber 24 (Ustilago) is from Basidomycota. 

The case number 28, which belongs to human

genome, was located beside number 30, which is from

a plant named Arabidopsis thaliana. These organisms

are systemically unrelated.  Sequence 28 is also unre-

lated to the other amino acid sequences.

Amino acid sequence decomposition: All amino acid
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sequences were decomposed using bior5.5 mother

wavelet to various levels. For example, two different

amino acid sequences from the mycoparasite fungus

Trichoderma spp., namely sequence number one and

sequence number nine which are similar to each other

and sequence number 20 from the fungus Gibberella
zeae which is far from two aforementioned sequences

were selected to show the decomposition. 

All three amino acid sequences were decomposed

to the five levels. The diagrams for approximation five

(a5) and details one to five (d1 to d5) have been shown

in Figure 3. As it can be seen, a5 for sequences one and

nine are completely identical, while a5 for sequence 20

is completely different. The same similarity can be

seen among d3, d4 and d5 for the sequences one and

nine, whereas in sequence 20 the dissimilarity can be

observed. As it visually seems in Fig. 3 the similarity

of amino acid sequences in different frequency bands

are different. For instance, the similarity of a5 between

sequences 1 and 9 is more than the similarity of d1
between two aforementioned amino acid sequences.

Therefore, the basic idea is that the similarity of

sequences in frequency bands probably is a good index

for clustering and it might be used instead of their own

amino acid sequence similarity. 

Auto and cross correlation: Raw amino acid

sequence similarity for  the sequences number one,

nine and 20 were shown in Figure 4 (section A, B and

C). Sequence approximation (section D, E and F) and

sequence details (section G, H and I) were also present-

ed. The maximum amount of auto correlation as was

expected was equal to 1 and can be observed at the

section A, D and G. 
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Figure 4. Auto (A, D and G) and cross correlation between raw amino acid data (A, B and C), a1 (D, E and F) and d1 (G, H and I) for sequence
one, 22 and 28.



In the section B maximum cross correlation

between sequence one and nine was close to one,

which means they are similar to each other. On the

other hand in section C, maximum cross correlation

between sequence one and 20 is about 0.8, which is

close to one, and it can not show the dissimilarity

between two sequences perfectly. In the section E and

F, which were used from the a1 of three sequences the

maximum amount of cross correlation between

sequence one and nine and sequence one and 20 are

about one and 0.9, respectively. This shows low fre-

quency bands (a1) of amino acid sequences have been

presented a weak discrimination between three

sequences. 

In contrast, the result of cross correlation per-

formed on d1 was shown considerable discrimination.
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Hence, the maximum cross correlation of d1 for the

sequence one and nine is approaching to one, while

this parameter for the sequence one and 20 is less than

0.2. In the section I the amount of dissimilarity

between sequence one and 20 can clearly be seen. 

In order to find the optimal way for clustering

theamino acid sequences the maximum amount of

cross correlation between each amino acid sequences

and other 29 amino acid sequences and their related a1,

d1 were drawn. For example in Figure 5A the maxi-

mum cross correlation for the sequence one with the

other 29 sequences has been presented. As it is clear in

the Figure 5, the maximum auto correlation for the

sequence one is always equal to one in all used data.

Moreover, the maximum cross correlation between

sequence one and nine and sequence one and five is

close to one. This means all the three sequences are

similar to each other and they can be located in the

same cluster. On the other hand the maximum cross

correlation between sequence one with the other 27

sequences are about 0.8 for the raw amino acid data,

0.9 for a1 and 0.2 for d1. Therefore, it is obviously

clear that d1 makes much better discrimination among

similar and dissimilar sequences. In fact, sequence

decomposition to a1 and d1 makes two bunches of data

which one of them (a1) decrease and the other one (d1)

increase the ability of sequence discrimination. In the

other word effective indexes for the clustering of

amino acid sequences have been concentrated in d1. 

In the Figure 5B, the maximum cross correlation

for the sequence 22 with the other 29 sequences has

been presented. When we consider the maximum cross

correlation from the raw amino acid data or a1 this

sequence shows the most amount of similarity with

sequence 24, which are not related to each other. But

when the maximum cross correlation for d1 is consid-

ered, the sequence 22 will be located beside sequence

23, which are from the same genus (Metarhizium). 

Figure 5C shows that sequence 28 from the human

genome are close to sequence 30 from Arabidopsis
thaliana, if we notice the maximum cross correlation

from the raw amino acid data or a1. In fact this

sequence has not significant similarity with other 29

sequences, and should be presented as an independent

cluster. Once again d1 makes a good discrimination

among different amino acid sequences. 

DISCUSSION

An improved wavelet based cladogram tree for the 30

different amino acid sequences from the N-acetyl-β-D-

glucosaminidases gene was drawn and presented in

Figure 6. This cladogram has all the advantages of

conventional cladograms (Fig. 2). For example both

cladograms made similar clustering for the sequence

one, five and nine. The same similar cluster can be

seen for the sequence 2, 8 and 12 in both cladogram

trees. In addition using wavelet transform, the draw-

back of the conventional trees has been improved. For

example in conventional cladogarms (Fig. 2) the case

number 22 which is from an Ascomycetous fungus

named Metarhizium was located beside number 24

which comes from a Basidiomycetes fungus named

Ustilago. These two organisms are systematically

unrelated and in fact this type of clustering is not true.

In the improved wavelet based cladogram tree (Fig. 6)

the case number 22 and 23 which are from the same

genus (Metarhizium) are located beside each other.

From the taxonomical point of view this kind of clus-

tering is much closer to the fact. Another drawback in

the conventional tree the case number 28, which

belongs to human genome, was located beside number

30, which is from a plant named Arabidopsis thaliana.

Again, these organisms are systemically unrelated. As
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Figure 6. Improved wavelet based cladogram tree for 30 different

amino acid sequences from different organisms.



a matter of fact the case number 28 is unrelated to all

other cases and no significant similarity can be seen

between this case and other 29 cases, and it should be

presented as an independent cluster. In the wavelet

based cladogram this drawback has also been

improved and this case is presented individually (Fig.

6).

CONCLUSIONS

Increasing number of exo-chitinases gene from the dif-

ferent organisms is becoming identified and different

mathematical algorithms have been used for clustering

far. But they sometimes seem insufficient and have

their own drawback. In the present study, thirty differ-

ent amino acid sequences for N-acetyl-β-D-glu-

cosaminidases obtained from the NCBI gene bank

were digitized and normalized to the signal energy.

Normalized data were decomposited using mother

wavelet bior 5.5 to approximation (a1) and details (d1)

afterwards. Cross correlation between normalized, a1
and d1 maximum coefficients were calculated and

finally the maximum correlation was selected as simi-

larity index and corresponded cladogram trees were

made. The results of this study showed that more opti-

mal and reliable cladogram tree can be produced using

wavelet based clustering method. Furthermore, better

discrimination who observed in the cladogram tree

obtained from d1 coefficients than normalized amino

acid sequences and also a1 coefficients. Interestingly,

in the cladogram tree made from d1 coefficients using

this approaches either the drawback of classic clado-

gram tree has been improved or they have much more

validity. The optimization of mother wavelet and also

the clustering method in order to make a better dis-

crimination should be further studied. 
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