
Abstract
Partial nitrification was reported to be technically feasi-
ble and economically favorable, especially for waste-
water with high ammonium concentration or low C/N
ratio. In this study, the effect of dissolved oxygen (DO)
and influent ratio of chemical oxygen demand to nitro-
gen (COD/N) ratio on biological nitrogen removal from
synthetic wastewater was investigated. Experiments
were conducted in moving bed biofilm reactors
(MBBRs) on partial nitrification process in pilot-plant
configuration for 300 days. DO levels were changed
from 0.04 to 0.12 and 0.42 to 3.4 mg/l in the anoxic
(R1) and aerobic (R2) reactors, respectively. The opti-
mum DO for partial nitrification was between 1-1.5
mg/l in the aerobic reactor (R2). Influent  COD/N ratios
between 20 and 2 g COD/g-N were tested by chang-
ing the nitrogen loading rate (NLR) supplied to the pilot
plant. During operational conditions when the DO con-
centration in aerobic reactor was above 1 mg/l, near
complete organic carbon removal occurred in the total
MBBRs system. The effluent total nitrogen concentra-
tion in the operational conditions (1.7-2.1 mg O2/l and
NH+

4-N=35.7 mg N/l) was obtained in the range of
0.85-2 mg/l. The highest nitrite accumulation (50%-
52%) took place at the DO concentration of 1-1.5 mg/l
and increased with decreasing COD/N ratio in aerobic
reactor (R2). This study showed that the average nitri-
fication rate at various COD/N ratios is about 0.96
gN/m2 per day while the maximum nitrification rate is
about 2 gN/m2 per day at COD/N ratios lower than 6.

The experimental COD/N ratio for denitrification was
close to complete sum of NO2

- and NO3
- (NOx)

removal efficiency (about 99%) at COD/N ratio equal
14 in the operational conditions in the anoxic reactor
(R1).
Keywords: Dissolved Oxygen; COD/N; Moving bed
biofilm reactors (MBBRs); Partial nitrification

INTRODUCTION

The operational costs of the conventional nitrification-

denitrification nitrogen removal process are to a great

extent related to the oxygen and organic matter

requirements. Some new processes have been devel-

oped recently to reduce these costs. One of these is a

rapid method of biological nitrogen removal. The

combination of the preceding partial nitrification and

the subsequent anaerobic ammonium oxidation

(Anammox) is regarded as a promising new method of

removing nitrogen from wastewater with a low C/N

ratio and a large quantity of ammonium (van

Loosdrecht et al., 1998). Nitrogen compounds are usu-

ally removed from wastewater by a combination of

two processes of nitrification (NT) and denitrification

(DN) (Wang and Yang, 2004). Usually, nitrite oxida-

tion proceeds faster than ammonia oxidation, so that

nitrite rarely increases in the environment. This is very

likely due to a minimum substrate concentration capa-

ble of steady state biomass and relatively high sub-

strate uptake rate of the nitrite oxidizers (Rittmann and

McCarty, 2001). If the nitrite oxidation could be con-
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trolled, an important advantage can be taken in nitro-

gen removal by using a shortcut biological nitrogen

removal process known as partial nitrification (PN).

Shortcut biological nitrogen removal is a new technol-

ogy that oxidizes ammonia to nitrite and reduces nitrite

to nitrogen gas (Chung and Bae, 2002). New process-

es such as nitrification/denitrification (NT-DN) have

been developed by way of nitrite accumulation (Ruiz

et al., 2006; Ruiz et al., 2003). This process is based on

the fact that, nitrite and nitrate are intermediary com-

pounds in both processes NT-DN, a PN to nitrite and a

DN from this nitrite, instead of nitrate, would be suit-

able (Chung and Bae, 2002). For these reasons, PN to

nitrite may be attractive. Nitrite accumulation studies

have been performed that focused on several factors,

such as free ammonia concentration by exploit pH or

temperature, dissolved oxygen concentration and het-

erotrophic nitrification (Antilo et al., 2006; Bernet et
al., 2001). The first MBBR facility became operational

in early 1990 in Norway and then this system devel-

oped in Europe and America. There are presently more

than 400 large-scale wastewater treatment plants based

on this process in operation in 22 different countries all

over the world (Maurer et al., 2000). More than 50

MBBR plants are in operation at commercial fish

farms. The MBBR process is based on the biofilm

principle that takes advantage of both the activated

sludge process and conventional fixed film systems

without their disadvantages. Reactor can be operated

at very high load and the process is insensitive to load

variations and other disturbances (Delenfort and

Thulin, 1997; Odegaard et al., 1994). Unlike most

biofilm reactors, the reactor volume in the MBBR is

totally mixed and consequently there is no dead or

unused space in the reactor. In addition, this system

has a small head loss and there is no need for recycling

of biomass or sludge (Xiao et al., 2007). The biofilm

carriers (Kaldnes1), made from high-density polyeth-

ylene or polypropylene, have a large surface area and

a density slightly less or heavier than 1.0×103 kg/m3

and the length (mm), diameter (mm) and protected

area (m2/m3) of biofilm carriers are 7, 10 and 500,

respectively (Delenfort and Thulin, 1997; Odegaard et
al., 1994). One important advantage of the MBBR is

that the filling fraction of biofilm carriers in the reac-

tor may be subject to preferences. In order to be able

to move the carrier suspension freely, it is recommend-

ed that filling fractions should be below 70% (Rusten

et al., 2006). The objective of this research was to

evaluate the influence of DO and COD/N ratios on

removal rate of organic substances and ammonium

from synthetic wastewater by applying a lab-scale

MBBR system filled with kaldnes (k1) for partial nitri-

fication process with continuous operation. 

MATERIALS AND METHODS

Experimental set-up: The experiments were conduct-

ed using two Plexiglas laboratory scale moving bed

biofilm reactors (MBBRs) in series followed by a final

clarifier. Without sludge recycle was implemented.

The anoxic reactor (R1) was constructed for study of

denitrifying bacteria carry out DN utilizing nitrite and

nitrate as electron acceptors. The internal recycle rate

from aerobic reactor to anoxic reactor was typically 3

times the influent flow rate. The aerobic reactor (R2)

was built to provide nitrification. MBBRs were placed

into a water bath equipped with aquarium heaters in

order to operate at the constant temperature of

28.5±1ºC. A sketch of the lab-scale MBBRs is shown

in Figure 1 and some key parameters listed in Table 1.

Sampling ports were provided in each reactor for sam-

ple collection. Anoxic and aerobic reactor was stirred

by fixed speed propellers that pushed the biofilm

media downward in the center of reactors. Normal pro-

peller speed in the anoxic and aerobic reactors was 60

and 30 rpm, respectively. Aeration was carried out

with air diffuser, located at the bottom of the aerobic

reactor. The airflow to the reactor was measured by a

rotameter and regulated with a manual valve.

Synthetic wastewater and internal recycle were contin-

uously fed into the bioreactors using a variable speed

pumps (Italian ETATRON DS model DLS-MA). The

Kaldnes (k1) carrier elements are made of polyethyl-

ene (density 0.95 g/cm3) and shaped like small cylin-

ders (about 10 mm in diameter) with a cross inside.

The effective specific growth area was about 500
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Figure 1. Schematic diagram of lab-scale MBBRs system.



m2/m3 at 100% filling grade (Odegaard et al., 1994).

The pilot plant was operated in pre-denitrification

mode with the anoxic phase preceding the aerated.

Operating procedure: The study was carried out

using synthetic wastewater which contained glucose as

the main organic constituent and provided balanced

macro- and micro- nutrients and alkalinity. The waste-

water was enriched with the macro-nutrients by adding

NH4HCO3 as nitrogen source and KH2PO4 and

K2HPO4 as phosphorus sources. The micro-nutrients

were added to correct growth conditions for microor-

ganisms according to Dulkadiroglu et al., 2005; Hem

et al., 1994. KOH and NaHCO3 were used for pH and

alkalinity adjustment. Seeding sludge was obtained

from Isfahan Municipal Wastewater Treatment Plant.

Prior to the experimental phase, the carrier elements

were acclimated for at least four weeks in the batch

reactors to allow biofilm development. The aerobic

reactor was operated under dissolved oxygen (DO)

concentrations in the range of 0.5 to 3.1 mg/l. The

wastewater was prepared with COD, NH4-N and

orthophosphate phosphorus (PO4-P) concentrations of

300 to 2000 mg/l, 25 to 250 mg/l and 5 to 50 mg/l,

respectively and was used to feed the system. 

Sampling and analysis: Samples were collected from

influent and sampling port of each reactor.

Temperature, dissolved oxygen and pH were measured

in each reactor immediately before sampling twice a

day and were controlled manually. DO and pH levels

were measured with an oxygen electrode (YSI-55,

YSI) and a pH meter (model CG-824), respectively.

The samples were analysed immediately after filtered

through 0.45 μm filter paper. Soluble COD, ammoni-

um (NH4-N), nitrate (NO3-N) and nitrite (NO2-N) was

measured in accordance with standard methods

(APHA, 2005) and all measurements were made in

duplicate. Concentrations of total suspended solids

(TSS) on the fixed biomass elements were analysed as

follows. The ten bio-carriers were put in a flask with

demineralised water and placed in an ultrasound bath

for 45 min to remove attached biomass. The bio-carri-

ers were then rinsed with demineralised water, and the

mixed liquid was filtered through a 0.45 μm fiber fil-

ter, dried at 105ºC and weighed. Due to variability in

the dimensions of the carriers, the obtained value was

referenced to the total measured surface area. TSS was

assessed for the total surface area in a cubic meter of

the reactor (Helness, 2007; Jahren et al., 2002;

Andreottola et al., 2000). 

RESULTS

Active denitrification occurs under anoxic conditions

that does not involve molecular oxygen, but rather

chemical forms (e.g., nitrite, nitrate, sulfate, etc) with

combined oxygen atoms. DO can inhibit the denitrifi-

cation reaction because oxygen functions as the elec-

tron acceptor for microorganisms over nitrate, and aer-

obic conditions repress enzymes involved in denitrifi-

cation (Zumft, 1997). Although high DO concentra-

tions in the biofilm reactor are necessary to enhance

the activity of nitrifying bacteria, denitrification is

inhibited by oxygen (Hagedorn-Olsen et al., 1994; Lie

and Welander., 1994). Figure 2, shows the maximum

and minimum distribution of DO levels 0.04-0.12 and

0.42-3.4 mg/l under the steady-state conditions in the

anoxic (R1) and aerobic (R2) reactor, respectively.

Different concentrations of DO were supplied to the

aerobic reactor to investigate the effect of DO on par-

tial nitrification. Figure 3, shows the profiles of solu-

ble COD (SCOD) removal (SCOD effluent) under var-
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Parameter Anoxic reactor (R1) Aerobic reactor (R2)

Volume (L)

Filling ratio with bio-carriers (%)

Specific biofilm surface area (m2/m3)

Total biofilm surface area (m2)

Flow rate (L/day)

Flow direction

HRT (h)

3.5

40

200

0.7

16.2

Up-flow

5.2

10

50

250

2.5

16.2

Up-flow

14.8

Table 1. Technical data for the moving bed biofilm reactors.



ious DO concentrations. SCOD removal increased

along with DO concentration in the aerobic reactor

under optimum conditions (COD=500 mg/l, NH4-

N=35.7 mg-N/l, hydraulic retention time (HRT) =20

h). When influent DO concentration in the aerobic

reactor was above 1 mg/l, complete soluble organic

carbon removal (> 99%) occurred for optimum condi-

tions, fluctuations in DO concentration did not nega-

tively influence the COD removal rate in the aerobic

reactor (R2) and complete soluble organic carbon

removal occurred in the total MBBRs system. Most

(about 80%) of the COD in the influent was used to

reduce sum of NO2
- and NO3

- (NOx) in the anoxic

reactor (R1) (influent COD= 500 mg/l), and the

remaining COD was removed in the aerobic reactor

(R2) by a combination of denitrification and aerobic

oxidation. 

Figure 4, shows the profiles of total nitrogen (TN)

removal under various DO concentrations. Nitrate

removal decreased in the anoxic reactor (R1), as DO

concentrations in the aerobic reactor (R2) increased

(above 2.7 mg O2/l). While, in the optimum conditions

(1.7-2.1 mg O2/l and NH+
4-N=35.7 mg N/l)) the efflu-

ent TN concentration was obtained in the range of

0.85-2 mg/l under partial nitrification in the MBBRs

system.

Figures 5 and 6, present the aerobic reactor (R2)

and anoxic reactor (R1) behavior during consecutive

increased in DO concentration in the aerobic reactor.

The results show that nitrification or NOx production
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Figure 2. Do concentration in anoxic reactor and aerobic reactor.

Figure 3. The effect of DO on SCOD removal rate under optimum
conditions in the anoxic and aerobic reactors (influent COD in the
anoxic reactor =500 mg/l). 

Figure 5. The effect of DO on TN removal rate in the anoxic reactor
MBBR system under partial nitrification. 

Figure 4. The effect of DO on TN removal rate in the aerobic reac-
tor MBBR system under partial nitrification.



NOx-N=∑ (NO-
2 + NO-

3) was affected by DO concen-

tration in the range ≤0.5-3.1≤ mg/l. It can be observed

that the nitrification rate increased when DO level in

aerobic reactor (R2) increased. A higher nitrate ions

around 4.3 mg/l was observed in the case of DO con-

centration above 3.1 mg/l (influent ammonium con-

centration =35.7 mg/l) but concentration of nitrite ions

was the lowest (by 0.14 mg NO2-N/l) in R2 (complete

nitrification occurred and dominated). The highest

nitrite accumulation took place at the DO concentra-

tion of 1-1.5 mg/l because partial nitrification occurred

and dominated. In addition, in the aerobic reactor (R2),

nitrite accumulated ratios (NO-
2-N/NOx-N) in the

optimum conditions (HRT=20 h, Qr=3Q and

T=28.5±1ºC) and different DO concentrations were

from 50% to 52%. Generally, the nitrite accumulation

rate in the aerobic reactor (R2) decreased with increas-

ing DO concentration above 1.5 mg/l (because com-

plete nitrification dominated).

Variation of nitrite and nitrate ions in relation to

influent COD/N ratio in the aerobic reactor is shown in

Figure 7. It shows the ratio of nitrite to total nitroge-

nous oxide in the optimum conditions and various

COD/N ratios were from 20% to 83% and average by

52%. As indicated, the nitrite accumulation rate

increased with decreasing COD/N ratio in the aerobic

reactor (R2) in the optimum conditions because partial

nitrification occurred and completed (500 mg COD/l,

HRT=20hr, Qr=3Q, DO= 1-1.5 mg/l and T=28.5±1ºC). 

The average TN effluent during the steady state and

in optimum conditions (data not shown) was 3.5±1

mg/l in the aerobic reactor for the partial

nitrification/denitrification (PND) process in MBBR

system. Figure 8, shows the relationships between

nitrification and denitrification (removal efficiency

percentage) and NO2-N/NOx-N (%) versus the

COD/N influent ratio in the anoxic reactor (R1) in the

MBBRs system. Influent COD/N ratios strongly

affected the nitrate and nitrite ions in the reactor (R1).

At the low COD/N ratio, limited denitrification was

achieved in the anoxic reactor. This study showed that

the average nitrification rate at various COD/N ratios

is about 0.96 g-N/m2 per day while the maximum nitri-

fication rate is about 2 g-N/m2 per day at COD/N

ratios lower than 6 in the MBBRs system.

Denitrification percentage was defined as the nitrogen
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Figure 6. The effect of DO level on nitrogen species concentration
in the aerobic reactor under optimum conditions (COD=500 mg/l,
NH4-N= 35.7 mg-N/l, HRT=20 h, internal recycle ratio (IR) =3Q).

Figure 7. Effect of influent COD/N ratio on nitrogen species concen-
trations in the aerobic reactor (R2) under partial nitrification: (DO
concentration=1.1-1.5 mg/l).

Figure 8. Relationship between the partial nitrification and denitrifi-
cation capacity versus the COD/N ratio in the anoxic reactor (R1).
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removed from oxidized ammonium nitrogen in anoxic

reactor (R1). NOx (NOx-N=Σ (NO-
2+NO-

3)) removal

efficiencies in all phases were excellent, despite

decreasing from 76% to 52% at COD/N=20 with

nitrite accumulation because of DO concentration

restricted in aerobic reactor (R2) and partial nitrifica-

tion occurred (date not shown). These results demon-

strated close to complete NOx removal efficiency

(about 99%) at COD/N=14 in the optimum conditions

(500 mg COD/l, 35.7 mg NH4-N/l, HRT=20 h, Qr

=3Q, DO= 1-1.5 mg/l and T=28.5±1ºC) in anoxic reac-

tor (R1).

DISCUSSION

Influence of DO on partial nitrification: Partial

nitrification (ammonium oxidation to nitrite) has

gained a lot of interest among researchers in the last

years especially in the field of high-strength ammoni-

um wastewater treatment. Turk and Mavinic, (1987)

demonstrated that this shortcut in the biological

ammonium removal process has several advantages

with respect to the complete nitrification: (1) a 40%

reduction of COD demand during denitrification; (2)

63% higher rate of denitrification; and (3) 300% lower

biomass production during anoxic growth.

Furthermore, partial nitrification can save up to 25%

of the oxygen demand for nitrification due to the sup-

pression of the nitratation (oxidation of nitrite to

nitrate) and reduce the CO2 emissions by 20% due to

the denitrification from nitrite instead of nitrate (Peng

and Zhu, 2006).

The oxygen concentration is also mentioned as a

very important limiting factor and could be used as a

tool for partial nitrification (Ruiz et al., 2003; Bernet

et al., 2001; Bae et al., 2001). Low DO concentrations

can affect the specific growth rate of both ammonium-

oxidising bacteria (AOB) and nitrite-oxidising bacteria

(NOB), depending on its oxygen saturation constant;

however, its influence on the NOB, (1.1 mgO2/l) is

significantly greater than on the AOB (0.3 mgO2/l)

(Wiesmann, 1994). At low oxygen concentrations,

changes in the population structure were observed by

Park and Noguera (2004), which could affect nitrite

accumulation rates. Oxygen level for nitrite accumula-

tion is in the range of 0.5-1.5 mg O2/l for suspended

cultures (Ciudad et al., 2005; Botrous et al., 2004;

Bernet et al., 2001). Otherwise, the transport mecha-

nisms in immobilized systems might even enhance the

nitrite accumulation, since the oxygen is normally con-

sumed in the first 50-100 μm of biofilms due to the

deficient oxygen transfer into biofilms (Okabe and

Watanabe, 2000) and an outward diffusion of the accu-

mulated nitrite from the inside of the biofilm to the liq-

uid bulk also occurs. Therefore, biofilm reactors with

low mass transfer coefficient at the interphase

biofilm/liquid, such as the rotating disk reactor (RDR)

or biological aerobic filter (Lindemann and Wiesmann,

2000), and moving bed biofilm reactors (MBBRs)

(this article) may be at an advantage for nitrite accu-

mulation. Figure 2 shows the minimum and maximum

DO in both anoxic and aerobic reactors. The amount of

DO fed to the anoxic reactor due to the internal recy-

cle flow from the aerobic reactor was influenced

because DO in anoxic reactor was found increased

when DO in aerobic reactor increased. Generally, DO

levels in anoxic reactor (R1) was lower than 0.1 mg/l

because at low DO level, ammonia-oxidizers use

nitrite as an artificial electron acceptor and generate

nitrous oxide (N2O) gas (Ritichie and Nicholas, 1972).

Nitric oxide (NO) gas is similarly produced by ammo-

nia-oxidizers, but this activity is less sensitive to DO

(Anderson and Levine, 1986). It is important to note

that these gases result from partial denitrification,

rather than incomplete nitrification using oxygen

(Remde and Conrad, 1990). Nitrite-oxidizers can also

reduce nitrite to nitric oxide (Bock et al., 1991), but

apparently not to nitrous oxide (Martikainen, 1985).

However, in an anaerobic and heterotrophic medium,

nitrite-oxidizers can reduce nitrate to nitrite (i.e. nitrate

respiration) as well as to ammonia (i.e. dissimilatory

nitrate reduction) (Sundermeyer-Klinger et al., 1984).

Under the steady-state conditions DO concentration in

the aerobic reactor (R2) was between 1 and 1.5 mg/l,

which resulted in a lower nitrate ion production (par-

tial nitrification dominated in R2) because this study

was intended to evaluate partial nitrification of the

MBBRs system in continuous flow mode. 

As indicated, the soluble COD removal efficiency

versus variation DO concentration at different reactors

of MBBRs system is shown in Figure 3. The results

showed that during operational conditions (500 mg

COD/l, 35.7 mg NH4-N/l, 7.14 mg PO4-P/l, HRT=20

h, Qr/Q=3) fluctuations in the concentration of DO had

no negative influence on COD removal rate in R2 and

complete soluble organic carbon removal more than

99% efficiency occurred in the total MBBRs system.

Most (about 80%) of the COD was used to reduce

NOx in the anoxic reactor (R1) (influent COD= 500

mg/l), and the remaining COD was removed in the aer-

obic reactor (R2) by a combination of denitrification

Zafarzadeh et al.

202



and aerobic oxidation. Chung et al. obtained the same

results, which are reconfirmed in this study (Chung et
al., 2006). 

As shown in Figure 4 during optimum conditions,

effluent total nitrogen (TN) concentration was affected

by DO concentrations in the range 0.5-≥3.1 mg/l. TN

removal rate increased with the increase in DO con-

centration; however, it decreased when DO concentra-

tion increased more than 2.7 mg/l. because when the

dissolved oxygen concentration in the reactor (R2)

exceeded 2.5 mg/l, ammonia was fully converted to

nitrate and ammonia conversion was limited by the

incoming ammonia load to the reactor (complete nitri-

fication occurred). The average DO value seemed to be

optimal at the range of 1.7-2.1 mg/l and the maximum

DO value should be at the range from 1.8 to 3 mg/l. It

is generally known that DO concentration above 1

mg/l is essential for complete dominated nitrification;

if the DO level is lower, oxygen becomes the limiting

factor and nitrification slows or ceases. On the con-

trary in denitrification, high DO levels will suppress

the necessary enzyme systems. Thus, when partial

nitrification-denitrification via nitrite becomes the

focus, controlling the DO level is critical to balance

the degrees of nitrification and denitrification, and the

resulting levels of nitrogen compounds in the effluent

(Ruiz et al., 2006; Yoo et al., 1999). Because the par-

tial nitrification process requires nitrite accumulation,

the second step must be restrained so as to accumulate

AOB and wash out NOB (Laanbrock and Gerards.,

1993). The dissolved oxygen half-saturation coeffi-

cients of AOB and NOB are 0.2 to 0.4 mg/l and 1.2

to1.5 mg/l, respectively (Picioreanu et al., 1997).

Therefore, low DO concentrations restrict NOB

growth more strongly than AOB growth, resulting in

nitrite accumulation (Peng et al., 2004). Garrido et al.
(1997) suggested that the specific growth rate of

ammonium oxidizers is superior to nitrite oxidizers at

DO concentrations below 1.5 mg O2/l. This result was

reconfirmed in the present study.

According to Figure 5 and 6, when the average DO

value was high in the aerobic reactor, NOx concentra-

tion was high and TN was mostly removed from the

effluent and the opposite trend occurred when the DO

value was low. At a DO concentration of 0.6 mg/l

nitrite accumulation took place due to partial nitrifica-

tion. The higher nitrite accumulation (by 50%)

occurred at DO concentrations in the range 1.1-1.5

mg/l in R2. At a DO below 0.65 mg/l ammonia conver-

sion was affected and higher than 2 mgO2/l nitrite,

accumulation was decreased. Ruiz et al. (2006) and

Jainlong and Ning, (2004) have observed that nitrite

accumulation occurred at DO concentration of 1.4

mg/l and 0.7-1.4 mg/l, respectively. This result was

reconfirmed in the present study.

Effect of influent COD/N ratio: Carrera et al. (2004)

reported that influent the COD/N ratio is one of the

most critical parameters for wastewater nitrogen

removal process, because it directly effects on func-

tional microorganism populations, including

autotrophic ammonium (NH+
4-N) oxidizer bacteria,

nitrite (NO-
2-N) oxidizer bacteria and heterotrophic

denitrifies. In a nitrogen removal system, different

microorganism populations compete for substrate,

which causes fluctuations in the effectiveness of

organic matter and nitrogen removal. According to

Figure 7 and 8, as indicated, the nitrite accumulation

rate increased with decreasing COD/N ratio in the aer-

obic reactor (R2) in the optimum conditions (500 mg

COD/l, HRT=20 h, Qr =3Q, DO= 1-1.5 mg/l and

T=28.5±1ºC). The average TN effluent during the

steady state and in optimum conditions (data not

shown) was 3.5±1 mg/l in the aerobic reactor for the

partial nitrification/denitrification process in MBBR

system. The decrease of nitrification rate was observed

when the COD/N ratio increased. Wiesmann, (1994);

Satoh et al. (2000) and Okabe and Watanabe, (2000)

obtained the same results, which are reconfirmed in

the present study.   

Figure 8 showed that the experimental COD/N

ratio for maximum denitrification was 14 g COD/g-N

while the stoichiometric ratio was 4.2 g COD/g-N.

This difference is attributable to the oxidation of

organic matter in the anoxic reactor with the oxygen of

the internal recycle (Carrera et al., 2004).

Park et al. (2000) reported that nitrous oxide forma-

tion during nitrification is favoured under lower DO

concentrations (0.2 to 0.5 mg/l). Nitrous oxide has a

relatively high toxicity for microorganisms and is also

a potent green-house gas with an activity 200 to 300

fold higher than that of carbon dioxide (CO2). During

partial nitrification, nitrous oxide could be formed in

three possible ways (Park et al., 2000): the oxidation

of hydroxylamine over nitrification (Goreau et al.,
1980), the possible reduction of accumulated nitrite to

nitrous oxide in anoxic zones inside the bio-carriers,

and the production of a small amount of nitrate during

denitrification in the anoxic region (Wrage et al.,
2001) (a small amount of nitrate is also produced dur-

ing the process of partial nitrification). It is commonly

agreed that low oxygen concentrations and high NO2-
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N concentrations favour higher N2O emissions.

Ultimately, the results indicated that the lab-scale

MBBR system under partial nitrification/denitrifica-

tion (pre-denitrification) has acceptable performance

for removal of nitrogenous compounds and organic

matter. It can significantly enhance the economical

balance of the treatments through a reduction in the

organic matter’s needs for denitrification step, a

decrease in aeration requirements in nitrification, with-

out sludge recycle and decrease in the surplus sludge

generation. Hence it can be  suggested that under par-

tial nitrification/denitrification (PND) process (pre-

denitrification), the MBBRs system could be used as

an ideal and efficient option for the total nutrient

removal from municipal and industrial wastewater.
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