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drug resistance appears as a result of various cellular 
processes including epigenetic modifications, impaired 
DNA repair proteins, deregulation of apoptotic 
pathways, increase in autophagy and decrease in the 
intracellular drug concentrations induced by drug 
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Background: Gene expression profiling and prediction of drug responses based on the molecular signature indicate new 
molecular biomarkers which help to find the most effective drugs according to the tumor characteristics. 
Objectives: In this study two independent datasets, GSE28646 and GSE15372 were subjected to meta-analysis based 
on Affymetrix microarrays.
Material and Methods: In-silico methods were used to determine differentially expressed genes (DEGs) in the 
previously reported sensitive and resistant A2780 cell lines to Cisplatin. Gene Fuzzy Scoring (GFS) and Principle 
Component Analysis (PCA) were then used to eliminate batch effects and reduce data dimension, respectively. Moreover, 
SVM method was performed to classify sensitive and resistant data samples. Furthermore, Wilcoxon Rank sum test 
was performed to determine DEGs. Following the selection of drug resistance markers, several networks including 
transcription factor-target regulatory network and miRNA-target network were constructed and Differential correlation 
analysis was performed on these networks.
Results: The trained SVM successfully classified sensitive and resistant data samples. Moreover, Performing DiffCorr 
analysis on the sensitive and resistant samples resulted in detection of 27 and 25 significant (with correlation ≥|0.9|) 
pairs of genes that respectively correspond to newly constructed correlations and loss of correlations in the resistant 
samples. 
Conclusions: Our results indicated the functional genes and networks in Cisplatin resistance of ovarian cancer cells 
and support the importance of differential expression studies in ovarian cancer chemotherapeutic agent responsiveness. 
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1. Background
Although chemotherapy is generally the primary 
line of treatment for ovarian cancer, it might not 
be satisfactory due to the intrinsic and/or acquired 
chemoresistance (1). Pharmacogenetics believe that 

*Corresponding author: Seyed Shahriar Arab, Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University,
Tehran, Iran. Tel: +98- 2182883494, Fax: +98- 2182884717, E-mail: sh.arab@modares.ac.ir
*Co-Corresponding author: Albert Rizvanov, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University,
Kazan, Russia.Tel: +784-32934307, Fax: +784-32927418, E-mail: Albert.Rizvanov@kpfu.ru



49Iran. J. Biotechnol. July 2021;19(3): e2643

transporters (2). Several researches have proposed 
that evaluation of metabolic pathways would help 
researchers identify resistant patients to chemotherapy 
(3). Due to the diversity of molecular mechanisms 
involved in drug resistance, high-throughput methods 
such as RNA/miRNA sequencing or SWATH mass 
spectrometry may result in smarter patient monitoring 
in clinical trials for the identification of resistance-
related biomolecules.
Challenges in cancer chemotherapy have led to the 
development of predicting methods for assessing 
drug efficacy in cell lines or human samples. The 
study of gene expression in cancer cells found that 
the pattern of gene expression in drug-resistant cells 
is far different and this phenomenon is caused by an 
alteration in the expression level of multiple genes 
(4). Using computational analysis methods to predict 
the pattern of drug resistance based on the patient’s 
molecular and clinical profiles can effectively improve 
the accuracy and quality of treatment. 
Gene regulatory network analysis is essential to unveil 
potential interactions in high-throughput experiments. 
Here, we introduce some mRNAs and transcription 
factors and we tend to reveal their regulatory effect in 
Cisplatin resistance gene regulation. Previous studies 
showed that altered expression of mRNA in ovarian 
cancer cell lines may play important role in promoting 
Cisplatin resistance. Therefore, in the present study, 
we focus on the differential expression and differential 
correlation of the genes in two datasets obtained from 
the NCBI GEO.
As currently, only two datasets of Cisplatin resistance 
and sensitive profiles are available in the Gene 
Expression Omnibus, we subjected meta-analyzing 
these gene expression profiles in Cisplatin-resistant 

and sensitive ovarian cancer cell lines that used similar 
array technology platforms. 
Our further aim was to investigate transcription factor-
gene, miRNA-gene and lncRNA-gene networks 
to present a complex network of genes and their 
regulators in Cisplatin resistance as well as to predict 
chemo-response in ovarian cancer. 

2. Objectives
In this study, transcription factor-gene, miRNA-gene 
and lncRNA-gene networks and their regulators in 
Cisplatin resistance as well as chemo-response in 
ovarian cancer will be evaluated by computational 
analysis methods.

3. Materials and Methods

3.1. Datasets
Two independent microarray datasets including 
GSE28646 (5) and GSE15372 (6) were retrieved from 
the NCBI Gene Expression Omnibus (GEO) database 
(Table 1). GSE28646 is a part of the GSE28648 super 
series and includes 15 (A2780 cell line) samples, from 
which, we selected three Cisplatin-resistant and three 
Cisplatin sensitive samples for downstream analysis. 
GSE15372 is also a part of the GSE15709 super series 
and includes 10 (A2780 cell line) samples consisting 
of five Cisplatin-resistant and five Cisplatin sensitive 
samples.

3.2. Data Preprocessing and Reconnaissance of 
Differentially Expressed Genes 
The recently introduced Gene Fuzzy Scoring (GFS) 
method was employed to remove data batch effects as 
well as to normalize the data between 0 and 1. GFS is 

Table 1. Detailed information of used datasets

Micro array Datasets              Platform	                                                 Description

Ovarian Cisplatin sensitive cell line A2780 (3 replicates)

Ovarian Cisplatin resistant cell line CP70 (3 replicates)

CP70 is a resistant primary cancer cell type derived from 

A2780.

Parental A2780 cells (Cisplatin sensitive) (GI50=5uM)

Round5 (multiple treatment cycles) A2780 cells (Cisplatin 

resistant) (GI50=35uM)

GPL570

 [HGU133_Plus_2]

GPL570

 [HGU133_Plus_2]

GSE28646

GSE15372

Ataei A et al.



50 Iran. J. Biotechnol. July 2021;19(3): e2643

a sensitive method which is capable of removing batch 
effects without introducing false positives. Using the 
GFS method, each expression is mapped to a number 
between 0 and 1 according to its rank in the sample 
sorted expression values (For more details please see 
(7)). Furthermore, the principal component analysis 
(PCA) was used to eliminate outlier data. 
In order to detect the Differentially Expressed Genes 
(DEGs) in the sensitive/resistant samples, Wilcoxon 
Rank Sum test (aka Mann-Whitney U Test) was 
applied. Genes with the lowest p-value were selected 
as DEGs for further analyses. The reason for using the 
nonparametric Rank Sum test instead of t-test was the 
failure of the normality test in the t-test. This can be 
due to either the low number of samples or the gene 
fuzzy scoring (8). However, the Rank Sum test sufferes 
a drawback as it’s p-value does not account for the 
amount of difference in expression values. Hence, we 
checked the genes with the lowest p-value and a fold 
change of at least two. For the down regulated genes 
the adjusted p-value was considered to be 0.00451 
and for the up regulated genes the adjusted p-value 
was considered to be 0.000625. Moreover, log2Fc for 
the down regulated genes was -31.33495 and for the 
up regulated genes was 26.728436. Furthermore to 
validate the results, LIMMA package was also used 
to obtain DEGs. 

3.3. Resistance Prediction Method
A simple Support Vector Machine (SVM) (9, 10) 
was employed to predict the resistance status of each 
sample. To this end, a t-test was performed on the 
resistance and sensitive samples and the first n DEGs 
were extracted as the features for SVM training. 
Jackknife re-sampling was then used for prediction 
evaluation.

3.4. Construction of Transcription factor-Target Regulatory 
Network 
Transcription factors corresponding to the extracted 
DEGs were harvested from the Trrust database 
(11) and TF-target network was constructed using 
Cytoscape 3.4. 

3.5. miRNA-Target Regulatory Network
Deregulated miRNAs in ovarian cancer Cisplatin 
resistance were harvested from the MirCancer 
2017 database (12). The results were subsequently 
introduced into mirDB (13) to specify the corresponding 
miRNAs targets. The identified DEGs (both up 
and down-regulated genes) were then compared 
with the obtained miRNA-Target interactions in 

the previous step.  Inverse patterns of deregulation 
between miRNAs and their targets, were selected to 
create of the miRNA-target regulatory network. This 
network was also visualized in Cytoscape. Moreover, 
MirCancer database was also searched for those 
deregulated miRNAs involved in chemoresistance 
development in different types of cancers. These 
miRNAs were similarly imported into mirDB to 
specify their corresponding target genes. The resultant 
miRNA-target interactions were filtered for those 
targets which are present in the list of identified up 
and down-regulated DEGs. The resulted interactions 
which show the converse pattern of expression were 
also visualized in Cytoscape.
To validate the extracted miRNA-mRNA interactions, 
starBase database (14) was applied. The 89 candidate 
chemoresistance genes were used as targets and 
miRNA interactions which were identified by 5 or 
more gene-target prediction programs in the starBase 
database were harvested. Harvested interactions 
were then analyzed using Cytoscape for degree and 
betweenness centralities. Nodes with degree centrality 
more than 10 and betweenness centrality more than 
0.00001 were then fed into mirPath v.3 (15) and 
ToppGene suite (16) to reveal their corresponding 
pathways.  

3.6. Construction of LncRNA-target Network
To reconstruct the corresponding lncRNA-target 
network of the 89 DEGs, lncTar (14) was used. The 
nucleotide sequences of 89 DEGs (considering all 
alternative spliced variants) as well as the sequences 
of all differentially expressed lncRNAs were collected 
in the FASTA format and were introduced into lncTar 
as inputs.

3.7. Differential Co-expression Analysis
The newly generated positive or negative correlations 
in resistant samples can shed light on the intricate 
deregulations which cannot be detected using 
differential expression analysis. Here, to find gene 
pairs which expression correlations have been changed 
between sensitive and resistant samples, “comp.2.cc.
fdr” function of Diffcorr package (17) in R was used 
on the normalized, pre-processed data.

4. Results

4.1. Findings Genes Expression Patterns in Sensitive 
and Resistant Cell Lines
PCA scatter plot of the first three principal components 
of original raw data reveals presence of batch effect 
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in the data (Fig. 1). After applying the GFS method, 
batch effect was successfully removed in PC3 and 
samples could then be clustered according to the 
biological replicates. 
To evaluate the SVM, Jackknife resampling was 
performed. In each iteration, one sample was removed 

and the SVM was trained using the remaining ones. 
The trained SVM was then tested using the removed 
sample. The procedure was repeated for every sample. 
The SVM successfully predicted the correct status of 
samples for all samples. Heatmap representation of 
down and up-regulated genes is shown in Figure 2. 

Figure 1. PCA scatter plot of the first three principal components of data before A) and after B) 
normalization. The colors blue and red correspond to cisplatin sensitive and cisplatin-resistant samples, 
respectively. Some sensitive samples in A) overlap with other samples

Figure 2. Heatmap representation of A) up-regulated and B) down-regulated genes

Ataei A et al.
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Both heatmaps show complete discrimination between 
sensitive and resistant samples.

4.2. Most of the Identified DEGs are Involved in the 
Resistance-associated Pathways
As was previously stated in the method section, DEGs 
were extracted by Wilcoxon Rank Sum test (Table 
S1). Figure S1 represents the deregulated genes 
from Table S1 which are associated with the process 
of tumor progression and chemotherapy resistance. 
Most of these genes are related to apoptosis, 
PI3k-AKT, MAPK, WNT and NOTCH signaling 
pathways. However, some are yet to be characterized. 

Furtheremore, to validate the results Limma package 
was also used to obtain DEGs. 62 out of 89 DEGs 
identified by the Wilcoxon rank sum test were also 
identified by the LIMMA package. 

4.3. TF-target, miRNA-Target and The lncRNA-Target 
Network Analysis of Differentially Expressed Genes 
TF-target regulatory network of deregulated genes is 
represented in Figure 3A. miRNA-target regulatory 
relationships between up and down-regulated miRNAs 
in ovarian cancer (blue and orange respectively) and  
their down- and up-regulated targets (pink and olive) 
has been shown in Figure 3B and Figure 3C. 

Figure 3. A: TF (pink-target regulatory network for up (violet) and down–regulated (blue) genes. Arrows, 
T bars, and solid lines show respectively activation, inhibition and unknown regulation of TFs on the target 
genes.
B, C: miRNA-target regulatory networks for deregulated miRNAs (blue and orange for respectively up and 
down-regulated miRNAs, pink and olive for down and up-regulated targets) previously reported in ovarian 
cancer (B) and those (green for down and violet for up-regulated miRNAs, red and yellow for respectively up 
and down-regulated targets) already known in different chemoresistance development in different cancers (C)
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The regulatory relationships between deregulated 
miRNAs in chemoresistance (violet for the ups and 
green for the downs) and their corresponding targets 
in the list of down (yellow) and up-regulated (red) 
genes have been depicted.
The lncRNA-target interactions inferred from 
lncTar is shown in Table S2. Interactions with dGn 
(normalized dg) ≤ -0.15 was considered as significant. 
The lncRNA PLAC2 was the only lncRNA showing 
stable interactions with few transcripts.
To improve our results, starBase database was also 
used to extract miRNA-mRNA interactions. miRNAs 
with degree centrality more than 10 are enriched 
in pathways including ECM-receptor interaction, 
Adherens junction, cancer raletrd proteoglycans, 
Hippo signaling cascade, Fatty acid degradation, ErbB 
signaling pathway, Ubiquitin mediated proteolysis, 
Gap junction and genes with degree centrality more 
than 10 are enriched in pathways including Notch 
signaling pathway, Lactosylceramide biosynthesis, 
Endocytosis, Th1 and Th2 cell differentiation, 
TNF signaling pathway, Breast cancer, Signaling 
by NOTCH1 and NOTCH2 and Angiogenesis. 
Furthermore, nodes with betweenness centrality more 
than 0.00001 are enriched in pathways including 
Proteoglycans in cancer, Hippo signaling pathway, 
TGF-beta signaling pathway, Renal Cell Carcinoma, 
Adherens junction, Cell cycle, AMPK signaling 
pathway, FoxO signaling pathway, mTOR signaling 
pathway, Signaling pathway regulating pluripotency 
of stem cells, pathways in cancer, Transcriptional 
misregulation in cancer, Focal adhesion, p53 signaling 
pathway, TNF signaling pathway, PI3K-Akt signaling 
pathway and Wnt signaling pathway. 

4.4. Identification of Differentially Correlated Genes 
in Sensitive and Resistant Cells
Performing DiffCorr analysis on the sensitive and 
resistant samples resulted into the detection of 27 and 
25 significant (with correlation ≥|0.9|) pairs of genes 
that respectively correspond to newly constructed 
correlations and loss of correlations in the resistant 
samples (Table S3). Some of those genes which are 
involved in significant pathways including WNT, 
Adherens junction, CAMP, PI3K-AKT, JAK-STAT, 
MAPK, Calcium, Hedgehog, Notch, HIF-1, P53 and 
Cell Cycle are illistrated in Figure S2. Mechanisms of 
action for most of these genes are not yet determined. 
Detailed Diffcorr analysis results as well as correlation 
study of the genes and their corresponding pathway 
analysis are shown in Table S4. 

4. Discussion
Resistance to chemotherapeutic agents is one of the 
most important obstacles in ovarian cancer. Cisplatin 
is a conventional chemotherapy agent that is used 
in the treatment of most solid tumors. Studies have 
shown that Cisplatin resistance is a multifaceted 
phenomenon that is affected by cellular events such 
as increased drug inactivation/efflux, defected DNA 
repair, alterations in drug toxicity and change in 
apoptotic processes (4). Microarray-based studies in 
ovarian cancer, illustrate a correlation between drug 
activity and shifts in the expression level of certain 
genes (4,18). Significant heterogeneity in drug 
response also have been expected due to the different 
pattern of gene expression in each cancer cell, even in 
cancer cells derived from the same cancer (19).
By analyzing microarray results, We have found 89 
genes with a significant change including increased and 
decreased expression levels in the 8 Cisplatin-resistant 
samples. Twenty-five of the genes we reported in Table 
S2 were not previously mentioned in the resistance of 
any type of cancer, including ovarian cancer. Though 
changes in expression levels of these genes indicate 
that these differences might be related to cellular 
responses to chemotherapy. However, confirmation 
of up/down regulation of these genes at the protein 
level in animal models and ovarian cancer patients 
before and after chemotherapy can provide evidence 
to accept or dismiss the possibility of involvement of 
these genes in response to the treatment. 
Although our further investigation in pathway 
analysis showed a complex interrelationship between 
some of these genes, their regulating transcription 
factors, miRNA and lncRNA regulatory network and 
differential expression correlation exhibited that these 
genes are independently implicated in anti-cancer 
drug resistance, recurrence, and EMT. 
One of the up-regulated genes was the exchange 
factor for ARF6R (EFA6) which has been previously 
identified as an ovarian cancer biomarker. Dietmar 
Pils et al. showed that EFA6 expression level 
is significantly lower in high grade tumor cells 
compared to normal ovarian samples or low grade 
tumors (20). A correlation between EFA6R expression 
and malignancies such as ovarian cancer  has been 
reported, though extra experiments determining the 
role of EFA6R in ovarian cancer are essential (21). 
Another up-regulated gene, doublecortin like kinase 
1 (Dclk1), is a protein involved in the microtubule 
polymerization and stimulated microtubule elongation 
processes (22). Recently, it has been reported that 
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vital cellular signaling pathways associated with 
EMT and CSC such as NOTCH, NF-KB, and WNT 
(23) are governed by Dclk1 expression in cancer 
models (24). Dclk1 expressing cells are quiescent 
and are involved in cancer incidence, development, 
and invasion in pancreatic cancer. This kinase has 
been reported to be overexpressed in pancreas, liver, 
colon, esophagus, and intestines cancers and is known 
as a TSC marker.  In gut cancers, the cell population 
with dclk1 overexpression also exhibits an enhanced 
expression of other TSC markers, including CD133, 
CD24 / CD44 / ESA, and ALDH (24). C. Benedikt 
Westphalen et al. have revealed that Dclk1 can bind 
to and operate with the oncogene, K-ras. According 
to their investigation, targeting of  Dclk1 in K-ras-
related cancers is an effective therapy method while 
therapeutic strategies targeting K-ras have failed in 
most of the trails (22). Other studies by Hui Wang et 
al. proved that there is a positive correlation between 
Dclk1 expression and overall survival (OS) in 
malignant pleural mesothelioma patients. They showed 
that the Dclk1 is regulated by MET/ERK5 signaling 
in human mesothelioma and inhibition of ERK5 and 
Dclk1 results in suppression of downstream oncogenic 
signalings like EMT, angiogenesis, pluripotency and 
anti-apoptotic which activity lead to chemoresistance. 
They suggested that MET/ERK5/Dclk1 signaling 
cascade could be a promising therapeutic target against 
mesothelioma (22). Other results demonstrated that 
Dclk-1 plays a regulatory role in cancer via miRNA 
dependent mechanisms. These studies showed that 
Dclk-1 adjusts the performance of Notch-1 in a post-
transcriptionally manner, and Notch-1 itself is the 
downstream target of the miR-144. (25).

In another study, it was shown that suprresion of 
Dclk1 expression leads to an up-regulation of the 
miRNA let-7a, a negative modulator of cell cycle, and 
also to down-regulation of the oncogene c-myc. Thus 
a role in the acquisition of malignant properties can 
be considered for Dclk1 protein. Moreover, siRNA-
mediated Dclk1 knockdown resulted in augmented 
expression of miR-200a that is an EMT suppresor 
and also in down-regulation of ZEB1 and ZEB2 with 
the subsequent rescue of E-cadherin in both human 
pancreatic and colorectal cancer cells (26). Recent 
studies revealed that  Dclk1 play a role in the regulation 
of angiogenic factors (VEGFR1 and VEGFR2), 
downstream targets of miR-200a-c (27). Moreover, the 
knockdown of Dclk1 provoked the activation of  miR-
143/145 tumor suppressor miRNA cluster (22). These 
data suggest that Dclk1 is a regulator for the activation 
of ATM-mediated DNA damage response in tuft cells 
leading to the development of self-renewal/survival 
and drug-resistance properties in  gut epithelial cells 
(Fig. 4) (23).
One of the down-regulated genes was zinc finger myelo-
proliferative and mental retardation-type 4 (ZMYM4), 
a chromatin-interacting protein. ZMYM4 stimulates 
DNA repair through homologous recombination (HR) 
system (28). By performing a series of statistical 
hypothesis testing, Fang-Han Hsu and co-workers 
showed that 112 genes including ZMYM4 correlate 
with progression-free survival in patients who were 
only treated with Paclitaxel/Carboplatin after the 
surgery. Their results suggest that the region of this 
gene is associated with chemotherapy response (29). 
Unlike our results, several studies stated the upregulation 
of PEG10 levels in hepatocellular carcinoma (HCC). 

Figure 4. The molecular mechanisms involved in ovarian cancer resistance to cisplatin is associated with 
the Dclk- 1 overexpression in following features: 1) activation of EMT 2) microRNA profile 3) TSCs related 
factors like pluripotency 4) ATM involvement.
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The data obtained from these studies Suggests PEG10 
has a role in resistance to apoptosis induced by serum 
starvation and chemo-therapeutic drugs, and also 
stimulation of cell growth. PEG10 gene is located 
in an imprinted domain on human chromosome 
7q21 and is characterized as a paternally expressed /
maternally silenced gene. Although the mechanism 
of PEG10 regulation has not yet been elucidated, it 
has been shown to act as an apoptosis inhibitor in 
serum deprivation conditions and the presence of 
chemotherapy drugs. (30). 
Qimin Zitan et al. reported that CHML is a cell 
growth suppressor agent which can cause a greater 
suppression effect in tumor cells than noncancerous 
cells. Their results suggested that CHML can trigger 
the activation of p53, contributing to CHML-induced 
apoptosis in some tumor cells such as MCF-7, RKO, 
and ML-I. They concluded that CHML prompts 
apoptosis through both the p53-dependent and 
independent cascades (31). According to their results 
and other investigations, it can be proved that down-
regulated expression level of CHML in osteosarcoma 
cell lines and clinical samples, large diffuse B cell 
lymphoma and breast cancer is associated with poor 
survival (32). 
In the survey of PM Neilsen and his colleagues, it was 
reported that decreased expression of ZNF652 was 
associated with breast cancer invasion and metastasis. 
They indicated that the down-regulation of ZNF652, 
a novel zinc-finger transcriptional repressor, induced 
by miR-155 causes up-regulation of TGFB1, TGFB2, 
TGFBR2, EGFR, SMAD2 and VIM as downstream 
targets (33). 
FEM1C belongs to an evolutionarily-conserved VHL-
box protein family that are all members of substrate 
recognition subunits of CUL2-RING E3 ubiquitin 
ligase complexes. FEM1 proteins regulate the Stem-
Loop Binding Protein (SLBP) that is a conserved 
protein interacting with the stem-loop structure 
located in the 3׳ end of canonical histone mRNAs 
and plays a role in mRNA cleavage and degradation 
mainly in the S-phase where histone synthesis occurs. 
It seems that the up-regulation of FEM1 results in 
SLBP enhancement and cellular degradation (34).
In parallel with our report, in the study of Chie Suzuki 
et al. it was reported that overexpression of Strawberry 
Notch Homolog 1) SBNO1( as a downstream component 
of the oncogenic Notch signaling pathway is associated 
with the proliferation of lung cancer cells (35, 36). 
Protein phosphatase-1 nuclear targeting subunit 
PNUTS (PPP1R10) is a PTEN regulatory protein 
and it’s downregulation is associated with increased 

apoptosis and decreased cellular proliferation in a 
PTEN-dependent manner (37).
The results of our study also showed that different 
molecular mechanisms are involved in the development 
of resistance to different chemotherapy drugs and 
therefore, we suggest a combinatory chemotherapy 
sterategy for cancer treatment.
The Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) analysis revealed 
that up-regulated DEGs mainly participated in the 
extracellular matrix and down-regulated DEGs were 
involved in the extracellular regions, differentiation 
of epithelial cells, and digestion. Furthermore, the 
KEGG pathways corresponding to the up-regulated 
DEGs included focal adhesion, ECM-receptor 
interaction, PI3K-Akt signaling pathway, PPAR 
signaling pathway, TGF-beta signaling pathway, 
Notch signaling pathway, MAPK signaling pathway, 
protein digestion, and absorption. While the down-
regulated DEGs were enriched in nucleic acid binding, 
protein complex binding and microtubule cytoskeleton 
assembly proteins. 
In addition to the identification of some transcription 
factor genes like ID2, HEY1 and APC with a major 
contribution to Cisplatin resistance amongst our 
DEGs, we looked for transcription factors which 
regulate our other differentially expressed genes. 
Interestingly, down-regulated transcription factor 
ID2 network including MYC family members and 
TP53 - which were previously reported to affect 
cell proliferation and also to amplify c-myc - and 
functional p53 lead to successful 5FU-based therapy 
in colorectal cancer patients (38, 39). Loss of function 
of transcription factor APC is reported in resistance 
to Cisplatin or doxorubicin-induced apoptosis through 
STAT3 activation (40). YY1 is a transcription factor 
that functions in biological processes including 
differentiation, development, and initiation of tumor 
and apoptosis (41). It was reported that inhibition of 
the YY1 leads to the sensitization of tumor cells to 
TRAIL-mediated apoptosis and therefore, YY1 can be 
used as an antitumor agent (42). 
NF-κB which is a key transcription factor composed 
of homo or heterodimers from a pool of five REL 
proteins, is involved in the development, progression 
and chemoresistance of cancer by activating a number 
of mediators, including anti-apoptotic genes (43). 
Moreover, FOXO4 which is a member of FOXO 
transcription factors plays important roles in the 
regulation of cell fate by promoting cell survival and 
resistance to environmental stress (44). Although the 
exact mechanism by which FOXO family members 
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respond to chemotherapy is unclear, it is demonstrated 
that FOXO4 functions in downstream of the PI3-K 
signaling pathway and is a direct phosphorylation 
target for the protein kinase Akt (45). Another member 
of this network is endothelium-derived Jagged1 which 
is shown to promotes Notch activation, invasion, and 
chemoresistance to paclitaxel in B cell lymphoma (46). 
In our transcription factor network construction, 
paternally expressed gene 10 (PEG10) is regulated by 
E2F-1 which was previously reported to be involved 
in drug resistance through binding to PEG10 promoter 
(47). 
Also, we showed that MDC1 is regulated by the 
STAT3 and BRCA1. MDC1 modulates the DNA 
damage pathway by STAT3 at the transcriptional level 
and overexpression of STAT3 leads to DNA repair 
and chemo-resistance. Also, it has been reported that 
MDC1 is involved in the recruitment of many DNA 
damage response proteins such as 53BP1 and the 
Mre11/Rad50/NBS1 (MRN) complex to the damage 
sites (48), (49).
One important factor in the field of pharmacogenetics 
contributes to microRNAs (miRNAs) as the members 
of the small non-coding RNAs, which are known as the 
post-transcriptional regulators. miRNAs bind to their 
complementary target messenger RNAs (mRNAs) 
leading to the translational repression or degradation 
of target mRNA (4). Recent reports have proved the 
critical roles for miRNAs in the development of drug 
resistance by regulation of hundreds or thousands of 
genes (5). It seems that analyzing the miRNA-gene 
regulatory network is essential to unveil the probable 
interactions in high-throughput experiments and 
computational methodologies. Here, our study found 
a signature of previously reported 9 deregulated 
miRNAs in ovarian cancer Cisplatin resistance which 
are associated with our DEGs. However, experimental 
assays in the approvement of the target-miRNA 
relation could provide a better understanding of these 
complex networks. 
Differentially expressed lncRNAs annotated with 
transcripts of our DEGs demonstrated that PLAC2 
is an lncRNA targeting the PITRM1 transcript 
variant 1, 2, 4, 5, 9, 6 and 3, PDS5A transcript 
variant 1 and MPC1 transcript variant 1, 2. As it is 
shown in Table S3 except PITRM1, the other genes 
are related to chemoresistance. It was reported that 
cancer progression as well as mRNA stabilization 
of the genes involved in differentiation of epidermal 
tissue are associated with regulation of the staufen-1 
protein-mediated by lncRNA PLAC2 transcript (50). 
However, in another study, cytoplasmic lncRNA 

PLAC2 expression was shown to be involved in cell 
cycle arrest in glioma through binding to the signal 
transducer and activator of transcription (STAT) 1 
and inhibition of  STAT1 nuclear transfer. Since the 
promoter of the ribosomal protein RPL36 (as the cell 
proliferation promoter and G1/S cell cycle progression 
factor) interacts with STAT1, decreased levels of 
cytoplasmic STAT1 can induce cell cycle inhibition in 
glioma (51). Further in vivo and in vitro experiments 
on this lncRNA and its target genes may pave the way 
for finding their precise mechanism of action as well 
as potential individual therapies. 
In our regulatory network analyses of the Cisplatin-
resistant ovarian cancer cell line, we administered 
the Differential Correlation analysis (DiffCorr) 
(DCG) which uses Fisher’s z-test to test differential 
correlation between two groups (52). These 
differentially associated groups indicated potential 
biological function in Cisplatin-resistant A2780 cells 
in comparison with the sensitive cells. By integrating 
the enrichment analyses into our results, we identified 
several genes with differential coexpression in 
Cisplatin resistant cells compared to sensitive cell 
lines involved in the cAMP signaling pathway, 
HIF-1 signaling pathway, FoxO signaling pathway, 
Cell cycle, Wnt signaling pathway, Notch signaling 
pathway, TGF-beta, PI3K-Akt signaling pathway.  
An example of such differential correlation was 
ATF2 which has been found to play role in MAPK 
signaling pathway, PI3K-Akt signaling pathway and 
TNF signaling pathway which are all involved in drug 
resistance (Table S4). We also observed extensive 
metabolic pathways in differentially co-expressed 
genes. Pathways such as mRNA surveillance pathway, 
RNA degradation ubiquitin-mediated proteolysis 
and protein processing in endoplasmic reticulum 
exhibited significant changes in expression correlation 
between sensitive and resistant cell lines. Moreover, 
comparative analyses of differentially co-expressed 
genes and differentially expressed genes showed that 
only TPP2 is both DCG and DEG indicating that it 
has different coexpression partners under different 
conditions and is also differentially expressed. TPP2 is 
a serine peptidase that is localized in the centrosome. 
It has been reported that TPP2 overexpression leads to 
centriole multiplication and is implicated in c-MYC-
associated Burkitt lymphoma cells (53,54). This 
observation highlighted the importance of DCGs 
analyses in resistance-related genes. Also, identifying 
differentially co-expressed genes in expression 
networks would help to detect regulatory genes 
involved in phenotype alterations such as resistance 
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induction. Taken together, the integration of high-
throughput experimental data with computational 
analysis would help to identify the exact gene 
interactions in specific phenotype.

5. Conclusion
In this paper, we detected genes with altered  expression 
levels in cisplatin-resistant ovarian cancer cells. To 
date, most drug resistance studies in ovarian cancer 
have performed concentrating on the proposed gene 
networks, which address a limited number of chemo-
resistance-related genes in other types of cancer. In 
contrast, data obtained from microarray technology, 
as well as appropriate tools for identifying expressed/
coexpressed genes in cisplatin-resistant ovarian 
cancer tissues, afford valuable information about 
potential new genes associated with drug resistance.  
This information can be applied for the improvement 
of strategies for cancer and may be conducted to more 
accurate personalized therapy.
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