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Background: Wheat dwarf virus (WDV) is a leafhopper-transmitted DNA virus which causes yellowing and stunting in wheat 
and barley fields leading to considerable crop loss around the world. Mainly, two host-specific forms of WDV have been 
characterized in wheat and barley (WDV-Wheat and WDV-Barley, respectively).
Objectives: This study was aimed to amplify, sequence and describe subgenomic DNAs (sgDNAs) associated with WDV 
infection among wheat and barley plants. The nucleotide sequence of sgDNAs were then compared to that of parental 
genomic DNAs (gDNAs) and the differences were shown.  
Materials and Methods: A total of 65 symptomatic plants were surveyed for WDV infection using double antibody sandwich 
enzyme-linked immunosorbent assay (DAS-ELISA) and polymerase chain reaction (PCR). Rolling circle amplification 
followed by restriction analysis (RCA-RA) was applied to identify both gDNAs and sgDNAs in the infected wheat and 
barley plants. Nucleotide sequence of eight full-length WDV genomes and five sgDNAs were determined.
Results:  Genomic sequences of WDV-Wheat and WDV-Barley isolates obtained in this study were identified as WDV-F 
and WDV-B, respectively, forming a separate cluster in the phylogenetic tree with the highest bootstrap support (100%). 
Sequence analysis of sgDNA molecules revealed that they have undergone different mutation events including deletions in 
viral genes, duplication of coding regions, and insertion of host-derived sequences.  
Conclusions: The association of different types of sgDNAs were found in WDV-infected wheat and barley plants. The 
sgDNAs exhibited remarkable changes compared to their parental molecules and they might play a role in symptom severity, 
host genome evolution and emergence of new virus variants/species.
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1. Background
Wheat dwarf virus (WDV, genus Mastrevirus, family 
Geminiviridae) cause stunting, mottling, yellowing 
or reddening in wheat and barley in certain parts of 
Europe, Asia and Africa (1). WDV has a single-stranded 
DNA genome, 2.6–2.8 kb in size, encapsidated into a 
twinned icosahedral particle (2). Its genome has four 
open reading frames (ORFs), two (V1 and V2) on 
the virion-sense strand and two (C1 and C2) on the 
complementary-sense strand encoding four proteins: 
movement protein (MP; V1), coat protein (CP; V2), 
and replication-associated proteins (RepA; C1 and 
Rep; C1:C2) (3). Rep is expressed through splicing 
and fusion of C1 and C2 ORFs (4, 5). Two non-coding 

regions are found on the genome including large and 
short intergenic regions (LIR and SIR, respectively) 
which are responsible for regulating gene expression 
and replication. The origin of replication of virion-
sense strand is characterized by a highly conserved 
stem-loop structure positioned within the LIR (6, 7). 
An oligonucleotide present in the virion anneals to its 
complementary sequence within the SIR and mediates 
replication of complementary-sense strand (8-10). The 
viral genome is replicated through two mechanisms: 
rolling circle replication (RCR) and recombination-
dependent replication (RDR) (11-19). 
In addition to the complete viral genome, subgenomic 
DNAs (sgDNAs) with relatively smaller sizes have 
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been found in a number of geminiviral infections 
around the world (20-25). These molecules were shown 
to be associated with reduced viral replication, delayed 
symptom development and/or symptom remission 
in their hosts (26-34). In terms of size, sgDNAs are 
typically half the size of their corresponding complete 
genomes and they are generated through diverse events 
including recombination, deletion, duplication and 
insertion of the template viral DNAs (reviewed in 30). 
To ensure their replication, these molecules mostly 
contain intergenic regions with cis-acting sequences 
(25, 26). Particularly, sgDNAs have been detected in 
WDV-infected hosts originating from Sweden (22) 
and Germany (25). Although WDV infection has been 
frequently detected in cereal cultivations of Iran (18), 
association of sgDNAs with the viral infection has not 
been reported to date. 

2. Objectives
The goal of this study was to identify any sgDNAs 
associated with WDV infection among wheat and 
barley plants in Iran. Description of these molecules 
was also included in the present study. 
       
3. Materials and Methods

3.1. Sampling 
Leaf samples collected in 2016 from wheat and barley 
plants showing typical symptoms of WDV infection 
in cereal fields of Ahvaz, Dezful and Abadan cities in 
Khuzestan province, southwest Iran were used to detect 
WDV infection. A total of 65 plants (43 wheat and 22 
barley plants) were surveyed in this study (Table 2). 

3.2. Double Antibody Sandwich ELISA (DAS-ELISA)
In order to detect WDV infection in collected samples, 
DAS-ELISA  was applied using polyclonal antibodies 
of WDV kindly provided by Dr. Antje Habekuß (Julius 
Kühn Institute, Quedlinburg, Germany). The assay was 
performed as described by Clark and Adams (35). 

3.3. DNA Extraction and PCR
Total DNAs were extracted from leaf samples using ZR 
Plant/Seed DNA MiniPrep™ kit (ZYMO RESEARCH 
CORP., USA) according to the protocol provided by the 
supplier, and subjected to polymerase chain reaction 
(PCR) in order to detect WDV DNAs. Another DNA 
extraction method using cetyltrimethylammonium 
bromide (CTAB) was applied to isolate total DNA from 
collected leafhoppers (36). PCR was performed on a 
thermal cycler (BIO-RAD, USA) in a volume of 25 mL 
containing 2.5 mL of 10X Dream Taq Green Buffer, 0.2 
mM of each dNTP, ~1 mL DNA template, 0.2 mM of 
each primer (Table 2) and 1 U Taq DNA polymerase 
(Thermo Scientific, Germany). The mixture was heated 
for 2 min at 95 °C and subjected to a 32-cycle PCR 
program (30 s at 96 °C, 60 s at 60 °C and 5 min at 72 
°C). The final cycle was followed by 10 min incubation 
at 72 °C. Approximately 5 mL of the PCR products 
were electrophoresed on a 1.0% agarose gel with TAE 
buffer (40 mM Tris-acetic acid, 0.1 mM EDTA, pH 
8.2-8.4 (at 25 °C), pre-stained with DNA Safe Stain 
(CINACLONE, Iran) and the gel was visualized under 
UV light. PCR products containing the amplified viral 
genome were purified and then subjected to nucleotide 
sequencing at BIONEER corporation (South Korea).

3.4. Rolling Circle Amplification, Cloning, and 
Sequencing
RCA method, based on the Phi29 DNA polymerase from 
Illustra™ TempliPhi 100 Amplification kit (GE Life 
Sciences, USA), was used to amplify the circular DNA 
molecules of WDV genome from total DNAs of WDV-
infected samples as described by Haible et al. (33). 
RCA products were then digested using HindIII and 
EcoRI enzymes (Thermo Scientific, Germany) which 
were expected to be single-cutters according to the 
results of in silico analysis of Iranian WDV sequences 
using NEBcutter software (ver. 2) (http://nc2.neb.com/
NEBcutter2/). The released DNA fragments with a size 
equal to or lower than ~2.7 Kb were recovered from 

Table 2. Details of collected samples tested for WDV infection using DAS-ELISA. 
 

Source City Geographical coordinates Number of plants Incidence rate (%) 
Longitude (λ) Latitude (φ) Tested Infected 

Triticum aestivum Ahvaz 48.6706190 31.3183270 14 10 71.42 
 Dezful 48.4235840 32.3830780 10 7 70.00 
 Abadan 48.2934000 30.3472960 9 6 66.66 

Hordeum vulgare Ahvaz 48.6706190 31.3183270 13 9 69.23 
 Dezful 48.4235840 32.3830780 11 5 45.45 
 Abadan 48.2934000 30.3472960 8 4 50.00 
     Total 63.07 

 
  

Table 1. Details of collected samples tested for WDV infection using DAS-ELISA.
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agarose gel using the PCR clean-up Gel extraction 
kit (Macherey-Nagel, Germany). These fragments 
were then cloned into a HindIII- or EcoRI-linearized 
pBluescript II KS+ plasmid (Stratagene, USA) using 
the standard cloning protocol (37). Bacterial colonies 
harboring the recombinant plasmid were detected by 
PCR using a WDV-specific primer pair (Table 2). The 
inserts were sequenced on both strands by sequencing 
service of BIONEER (South Korea) using universal 
M13/M13-Reverse primer pair given in Table 2. 

3.5. Sequencing Analysis
Base calling was performed using DNAStar 
Lasergene suite (DNAStar, Madison, WI, USA). 
SeqMan Pro software version 8 (DNASTAR, 
USA) was used to assemble the sequence reads 
for determination of the full-length sequences of 
WDV isolates. Complete and incomplete viral DNA 
sequences were deposited on NCBI database. The 
resulting genomic and subgenomic sequences were 
compared to other WDV isolates for which complete 
genome information was available in GenBank 
database. A total of 61 WDV full-length sequences, 
including 8 sequences determined in this study and 53 
sequences from different sources and diverse regions 
previously deposited on GenBank were used to carry 
out a comprehensive phylogenetic analysis. Multiple 
alignment of the sequences was performed using 
CLC Main Workbench software (ver. 7.6.2), and 
the Maximum Likelihood approach using General 
Time Reversible model test (38) with 100 bootstrap 
replicates was used to construct a phylogenetic tree. 
One isolate of Oat dwarf virus (ODV) was included 
in the analysis as an outgroup.  

4. Results 

4.1. Sequence Analysis of  WDV Full-Length Genome
PCR-positive sample of each viral strain was subjected 
to RCA followed by digestion analysis to amplify and 
release the complete/incomplete gDNAs of the Iranian 
isolates of WDV. When HindIII was used, a ~2.7 kb 
DNA fragment was released from the majority of RCA-

amplified DNA molecules (Fig. 1A, C).  Additionally, 
DNA fragments with smaller sizes (~1.3 kb) were 
observed in some HindIII-treated RCA products (Fig. 
1). RCA-amplified DNA molecules which were not 
restricted by HindIII were subsequently subjected 
to EcoRI digestion, resulting in the  release of viral 
gDNAs and sgDNAs (Fig. 1B, D). Eight full-length 
(~2.7 kb) and 5 incomplete (~0.75-1.3 kb) fragments 
from wheat and barley strains of WDV were cloned, 
sequenced, and designated. The sequences of  full-
length genomes of WDV were deposited in GenBank. 
WDV-Wheat was found in both wheat and barley plants 
while WDV-Barley was detected only in barley plants 
(data not shown). Multiple alignments of full-length 
genome sequences were conducted and a Maximum-
Likelihood phylogenetic tree was constructed, based 
on which seven strains of worldwide WDV isolates 
(A-G) were identified (Fig. 2). These isolates were 
generally classified into two super-clades: WDV-Wheat 
and WDV-Barley. WDV-Barley super-clade consisted 
of strains A, B and G, whereas strains D, C, E, and F 
were placed in the WDV-Wheat super-clade. WDV 
sequences obtained in this study were grouped based on 
a host-dependent classification, thus wheat- and barley-
derived WDV isolates were placed in WDV-Wheat 
and WDV-Barley super-clades, respectively (Fig. 2). 
Moreover, WDV-Wheat and WDV-Barley isolates 
characterized in this study formed a separate cluster 
in the phylogenetic tree with the highest bootstrap 
support (100%) and divided into WDV-F and WDV-B, 
respectively (Fig. 2).
Genome organization of WDV isolates obtained in this 
study was characterized. Each complete viral genome 
contained four ORFs encoding four proteins: MP (V1) 
and CP (V2) on the virion-sense strand and RepA (C1) 
and Rep (C1:C2) on the complementary-sense strand  
of the genome (Fig. 3). LIR sequense embodying 
a stem-loop motif which contains the conserved 
TAATATT↓AC sequence (7) and SIR sequence were 
identified in the viral genomes (Fig. 3). 

4.3. Description of WDV sgDNAs
Five forms of sgDNAs were found to be associated 

Table 
Table 1. Oligonucleotide primers used in this study. 
 

 
 
 
 
 
 

v: virion-sense strand, c: complementary-sense strand.  

Primer Sequence [5 to 3] Target Used for 
WDV-445c TTACCTCGGGAGTCCTTG WDV detection/sequencing 
WDV-2400v TCCAAGGCGTACTGTGGCTC 
M13-Reverse  CACACAGGAAACAGCTATGAC pBluescript II SK (+) sequencing 

 M13-Universal  CGTTGTAAAACGACGGCCAGTG 

Table 2. Oligonucleotide primers used in this study.
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with WDV infection in wheat and barley plants (Fig. 
3). In case of WDV-Barley, two sgDNA molecules 
(MH513493 and MH513492) were described, both 
containing complete V1 and LIR sequences. Accession 
No. MH513493 contained a duplicated sequence 
originating from V1 which was positioned just 
downstream of the complete V1 (Fig. 3). In addition to 
complete V1 and LIR, the other subgenomic molecule 
(MH513492) showed sequence deletion at 3’end of C1 
and, interestingly, insertion of a non-viral sequence 
originating from barley DNA. BLASTn results showed 
that this host-derived sequence has 89% nucleotide 
identity (coverage: 76%) to  beta-ketoacyl-ACP 
synthase I (Kas12) gene (M60410) from barley genome. 
Three forms of sgDNAs (MH513496, MH513494 and 
MH513495) were identified in wheat plants infected with 
WDV-Wheat (Fig. 3). The first accession (MH513496) 
contained the complete sequence of V1 and LIR as well 

as C1 with a deletion at 3’end of the ORF. The second 
accession (MH513494) harbored a truncated LIR and 
an incomplete C1 with deleted sequences at 3’end of 
the ORF. The third accession (MH513495) consisted 
of complete C1 and LIR together with an incomplete 
C1:C2 showing deletion at 3’end of the ORF. None of 
the sgDNAs contained either wild-type or mutant SIR 
sequences (Fig. 2). 

5. Discussion 
Since the first report of WDV in Iran in 2011 (39), the virus 
has been isolated from diverse sources (19). Application 
of the RCA technique provided the opportunity for 
determining more isolates of WDV originating from 
different sources and various regions in Iran (18). WDV 
isolates from around the world have been subjected to 
phylogenetic analysis for more than a decade, revealing 
genetic variations among these viruses (1, 14-16, 18).  

1 
 

 

Figures 

 

 

 

Figure. 1 Gel electrophoresis pattern of RCA-RA products from WDV-infected samples collected from symptomatic 

wheat (A, B) and barley (C, D) plants. The restriction enzymes used to release viral fragments are indicated at the 

bottom of each gel panel. Marker: 1 Kb GeneRuler™ DNA ladder (Thermo Scientific, Germany) 

Figure 1. Gel electrophoresis pattern of RCA-RA products from WDV-infected samples collected from symptomatic wheat (A, B) and 
barley (C, D) plants. The restriction enzymes used to release viral fragments are indicated at the bottom of each gel panel. Marker: 1 Kb 
GeneRuler™ DNA ladder (Thermo Scientific, Germany)
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Due to a long-term co-evolution between virus and host 
in regions shown to be the origin of cereal cultivation, 
it can be speculated that new strains of WDV have been 
emerging over time (18). Fertile Crescent is believed 
to be the origin of agriculture, and it has been shown 
to include some regions of Iran (40). It seems that 
WDV isolates originating from Iran have a remarkable 
genetic diversity as two novel strains (i. e. WDV-F and 
WDV-G) have been exclusively reported from Iran 
(18, 19). In the present study, a total number of eight 
WDV sequences including four sequences from wheat 
and four sequences from barley were determined and 
identified as WDV-F and WDV-B strains, respectively 
(Fig. 2). Furthermore, two super-clades, WDV-Wheat 
and WDV-Barley, and seven strains, A, B, C, D, E, F 
and G, were formed on the cladogram tree which was 
consistent with the results of previous analyses (18, 19). 
Association of sgDNAs with the corresponding viral 
infections caused by plant DNA viruses has been 
reported before (20-25, 32). Although these molecules 

were associated with symptom amelioration in the 
virus-infected hosts in the majority of the studies 
(26-29), their presence in cereals naturally infected 
with WDV did not negatively influence symptom 
development (25). Similarly, we could not observe 
any symptom attenuation in WDV-infected wheat 
and barley plants containing sgDNAs. However, 
further greenhouse experiments are required to test 
the effect of sgDNAs on symptom severity in WDV-
infected plants. The sgDNAs investigated here showed 
different mutation events including deletion (in C1, 
V1 and C1:C2), duplication (of V1) and insertion (of 
barley DNA) (Fig. 3), conforming to earlier reports 
(22, 25). All sgDNAs analyzed in this study contained 
either complete or incomplete LIR sequences (Fig. 
3), as has been reported by other researchers (22, 25).  
Nevertheless, we could not identify any SIR sequence 
in the sgDNAs, suggesting that LIR sequence alone 
is adequate for replication of sgDNAs within WDV-
infected plant cells. This is the first report of WDV-
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Figure. 2 Circular cladogram tree achieved by multiple alignments of full-length genomes from worldwide isolates of 

WDV. One isolate of ODV was included as outgroup. The phylogenetic tree was constructed using maximum 

likelihood method with 100 bootstrap replicates by CLC Main Workbench 7.6.2. Strains A-G of WDV isolates, two 

super-clades of WDV strains (WDV-Wheat and WDV-Barley, respectively) and one isolate of ODV (outgroup) are 

indicated. WDV isolates obtained in this study are boxed 

 

 

 

  

Figure 2. Circular cladogram tree achieved by multiple alignments of full-length genomes from worldwide isolates of WDV. One isolate of 
ODV was included as outgroup. The phylogenetic tree was constructed using maximum likelihood method with 100 bootstrap replicates by 
CLC Main Workbench 7.6.2. Strains A-G of WDV isolates, two super-clades of WDV strains (WDV-Wheat and WDV-Barley, respectively) 
and one isolate of ODV (outgroup) are indicated. WDV isolates obtained in this study are boxed
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derived sgDNAs lacking SIR sequences in natural 
infections. A similar case was reported about sgDNAs 
characterized in maize plants infected with Maize 
streak mastrevirus (21). Regarding the rapid emergence 
of new geminiviruses (41), these molecules might be 

serving as a genetic pool for producing new variants 
and/or species of these devastating viruses (30).   
It has been shown that sgDNAs sometimes contain 
exogenous sequences originating from another virus 
simultaneously infecting the plant cell (23) and/or from 

3 
 

Figure. 3 Genomic (top) and subgenomic (bottom) organization of WDV-Wheat (right) and WDV-Barley (left) isolates obtained from the infected wheat and barley plants, respectively. The 

positions of large and small intergenic regions (LIR and SIR, respectively) and the putative stem-loop motif in LIR are shown. Locations of the two unique sites of restriction enzymes (HindII and 

EcoRI) used for releasing gDNAs and sgDNAs are also shown. The corresponding ORFs and encoded proteins are indicated (V1, CP (coat protein); V2, MP (movement protein); C1, RepA 

(replication-associated protein A) and C1:C1, Rep).  The sgDNAs having undergone deletion, duplication and insertion events are shown. ORFs with deleted sequences are specified with delta (Δ) 

symbols. Hollow lines show deleted regions of the genome. The nucleotide positions of restriction sites on full-length genome sequences given in parenthesis are based on GenBank accessions 

MH477620 and MH477616 for WDV-Wheat and WDV-Barley, respectively 

 

Figure 3. Genomic (top) and subgenomic (bottom) organization of WDV-Wheat (right) and WDV-Barley (left) isolates obtained from 
the infected wheat and barley plants, respectively. The positions of large and small intergenic regions (LIR and SIR, respectively) and 
the putative stem-loop motif in LIR are shown. Locations of the two unique sites of restriction enzymes (HindII and EcoRI) used for 
releasing gDNAs and sgDNAs are also shown. The corresponding ORFs and encoded proteins are indicated (V1, CP (coat protein); V2, MP 
(movement protein); C1, RepA (replication-associated protein A) and C1:C1, Rep).  The sgDNAs having undergone deletion, duplication 
and insertion events are shown. ORFs with deleted sequences are specified with delta (Δ) symbols. Hollow lines show deleted regions of the 
genome. The nucleotide positions of restriction sites on full-length genome sequences given in parenthesis are based on GenBank accessions 
MH477620 and MH477616 for WDV-Wheat and WDV-Barley, respectively
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the host genome (25). Similarly, we identified a sgDNA 
containing a barley-derived DNA sequence in WDV-
infected barley plants (Fig. 3). The sgDNAs can be 
encapsidated in viral particles (21) and transmitted to 
other plants by the insect vector (26). Since these viral 
particles are not able to cause infection upon entering 
new host cells, the plant DNA fragments carried by them 
are released into nuclear space (21). This phenomenon 
has been considered to play a role in genome evolution 
of plant hosts of viruses over the long term (25). Further 
in planta experiments are necessary for identifying the 
potential effects of these molecules on other aspects of 
WDV life cycle, such as replication. 
The occurrence frequency of sgDNAs are usually 
low among naturally infected plant hosts (30). In the 
present survey, of 41 WDV-infected samples (Table 
1), only 4 samples were found to contain sgDNAs 
which showed an occurrence frequency of 9.75%. In 
a similar study carried out by Schubert et al. (25), a 
relatively higher frequency (29.62%) was reported for 
the occurrence of sgDNAs in WDV-infected plants. 
Patil et al. (30) concluded that these molecules are very 
rare or are present below the levels of detection in the 
natural host. Moreover, the frequency of sgDNA can 
also be influenced by the host plant as different rates of 
sgDNAs were recorded in various hosts (26, 30).      

6. Conclusion
Different types of sgDNAs were found to be associated 
with WDV infection in wheat and barley plants. These 
molecules have undergone different mutation events 
including deletions in viral genes, duplication of coding 
regions, and insertion of host-derived sequences. The 
sgDNAs might play a role in symptom severity, host 
genome evolution and emergence of new virus variants/
species.
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